Voltage Drop Calculations For Engineers - Beginners

Google+

Voltage drop formulas //

Voltage drop calculations using the DC-resistance formula are not always accurate for AC circuits, especially for those with a less-than-unity power factor or for those that use conductors larger than 2 AWG.

Table 1 allows engineers to perform simple ac voltage drop calculations. Table 1 was compiled using the NeherMcGrath ac-resistance calculation method, and the values presented are both reliable and conservative. This table contains completed calculations of effective impedance (Z) for the average ac circuit with an 85 percent power factor (see Calculation Example 1).

If calculations with a different power factor are necessary, Table 1 also contains the appropriate values of inductive reactance and AC resistance (see Example 2).

The basic assumptions and the limitations of Table 1 are as follows:

1. Capacitive reactance is ignored.
2. There are three conductors in a raceway.
3. The calculated voltage drop values are approximate.
4. For circuits with other parameters, the Neher-McGrath ac-resistance calculation method is used.

Calculation Example \#1

A feeder has a 100 A continuous load. The system source is 240 volts, 3 phase, and the supplying circuit breaker is 125 A. The feeder is in a trade size $11 / 4$ aluminum conduit with three 1 AWG THHN copper conductors operating at their maximum temperature rating of $75^{\circ} \mathrm{C}$. The circuit length is $\mathbf{1 5 0} \mathbf{f t}$, and the power factor is $\mathbf{8 5}$ percent.

Using Table 1 below, determine the approximate voltage drop of this circuit.

See the solution //

STEP-1 // Find the approximate line-to-neutral voltage drop.
Using the Table 1 column "Effective Zat 0.85 PF for Uncoated Copper Wires", select aluminum conduit and size 1 AWG copper wire. Use the given value of 0.16 ohm per 1000 ft in the following formula:

$$
\begin{aligned}
\text { Voltage drop }_{(\text {line-l-o-neutral }} & =\begin{array}{c}
\text { table } \\
\text { value }
\end{array} \frac{\begin{array}{c}
\text { circuit } \\
\text { length }
\end{array}}{1000 \mathrm{ft}} \times{ }_{\text {load }}^{\text {circuit }}
\end{aligned}
$$

STEP-2 // Find the line-to-line voltage drop:

$$
\begin{aligned}
\text { Voltage }^{\text {drop }}{ }_{(\text {line-to-line) }} & =\text { voltage drop } \\
& =2.40 \mathrm{~V} \times 1.732 \\
& =4.157 \mathrm{~V}
\end{aligned}
$$

STEP-3 // Find the voltage present at the load end of the circuit:

$$
240 \mathrm{~V}-4.157 \mathrm{~V}=235.84 \mathrm{~V}
$$

Calculation Example \#2

A 270 A continuous load is present on a feeder. The circuit consists of a single 4-in. PVC conduit with three 600kcmil XHHW/USE aluminum conductors fed from a 480 V , 3-phase, 3-wire source. The conductors are operating at their maximum rated temperature of $75^{\circ} \mathrm{C}$.

If the power factor is $\mathbf{0 . 7}$ and the circuit length is $\mathbf{2 5 0} \mathbf{f t}$, is the voltage drop excessive?

See the solution //

STEP-1 I/ Using the Table 1 column " X_{L} (Reactance) for All Wires", select PVC conduit and the row for size $\mathbf{6 0 0} \mathbf{k c m i l}$ A value of $\mathbf{0 . 0 3 9}$ ohm per 1000 ft is given as this \mathbf{X}_{L}. Next, using the column "Alternating-Current Resistance for Aluminum Wires", select PVC conduit and the row for size 600 kcmil . A value of $\mathbf{0 . 0 3 6}$ ohm per $\mathbf{1 0 0 0} \mathbf{f t}$ is given as this R.

STEP-2 // Find the angle representing a power factor of 0.7.

Using a calculator with trigonometric functions or a trigonometric function table, find the arccosine $\left(\cos ^{-1}\right) \theta$ of 0.7 , which is 45.57 degrees. For this example, call this angle.

STEP-3 // Find the impedance (\mathbf{Z}) corrected to 0.7 power factor $\left(\mathbf{Z}_{\mathbf{c}}\right)$:
STEP-4 // As in Calculation Example 1, find the approximate line-toneutral voltage drop:

$$
\begin{aligned}
Z_{c} & =(R \times \cos \theta)+\left(X_{L} \times \sin \theta\right) \\
& =(0.036 \times 0.7)+(0.039 \times 0.7141) \\
& =0.0252+0.0279 \\
& =0.0531 \text { ohm to neutral }
\end{aligned}
$$

$$
\begin{aligned}
\text { Voltage drop }_{(\text {line-to-neural) }} & =Z_{c} \times \frac{\text { circuit length }}{1000 \mathrm{ft}} \times \text { circuit load } \\
& =0.0531 \times \frac{250 \mathrm{ft}}{1000 \mathrm{ft}} \times 270 \mathrm{~A} \\
& =3.584 \mathrm{~V}
\end{aligned}
$$

STEP-5 // Find the approximate line-to-line voltage drop:
STEP-6 // Find the approximate voltage drop expressed as a percentage of the circuit voltage:

STEP-7 // Find the voltage present at the load end of the circuit:

$$
\begin{aligned}
\text { Voltage drop }_{(\text {line-t-l-line) }} & =\text { voltage drop } \\
& =3.584 \mathrm{~V} \times 1.732 \\
& =6.208 \mathrm{~V}
\end{aligned}
$$

Conclusion // According to 210.19(A)(1), Informational Note No. 4, this voltage drop does not appear to be excessive.

$$
\begin{aligned}
\text { Percentage voltage drop }_{\text {(line-l-a-line) }} & =\frac{6.208 \mathrm{~V}}{480 \mathrm{~V}} \times 100 \\
& =1.29 \% \mathrm{VD}
\end{aligned}
$$

TABLE 1 //

$$
480 \mathrm{~V}-6.208 \mathrm{~V}=473.8 \mathrm{~V}
$$

Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, $60 \mathrm{~Hz}, 75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$

Three Single Conductors in Conduit //

$\begin{gathered} \text { Size } \\ \text { (AWG } \\ \text { or } \\ \text { kcmil) } \end{gathered}$	$\frac{\text { Ohms to Neutral per Kilometer }}{\text { Ohms to Neutral per } 1000 \text { Feet }}$														$\begin{array}{\|c} \text { Size } \\ \text { (AWG } \\ \text { or } \\ \text { kcmil) } \end{array}$
	X_{L} (Reactance) for All Wires		Alternating-Current Resistance for Uncoated Copper Wires			Alternating-Current Resistance for Aluminum Wires			Effective Z at 0.85 PF for Uncoated Copper Wires			Effective Z at 0.85 PF for Aluminum Wires			
	$\begin{array}{\|c\|} \hline \text { PVC, } \\ \text { Alumi- } \\ \text { num } \\ \text { Conduits } \end{array}$	Steel Conduit	PVC Conduit	$\begin{aligned} & \text { Alumi- } \\ & \text { num } \\ & \text { Conduit } \end{aligned}$	Steel Conduit	PVC Conduit	$\begin{array}{\|c\|} \text { Alumi- } \\ \text { num } \\ \text { Conduit } \end{array}$	Steel Conduit	PVC Conduit	$\begin{array}{\|c\|} \text { Alumi- } \\ \text { num } \\ \text { Conduit } \end{array}$	Steel Conduit	PVC Conduit	Aluminum Conduit	Steel Conduit	
14	$\begin{aligned} & 0.190 \\ & 0.058 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.073 \end{aligned}$	$\begin{array}{r} 10.2 \\ 3.1 \\ \hline \end{array}$	$\begin{array}{r} 10.2 \\ 3.1 \\ \hline \end{array}$	$\begin{array}{r} 10.2 \\ 3.1 \\ \hline \end{array}$	-	-	-	$\begin{aligned} & 8.9 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.9 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 8.9 \\ & 2.7 \end{aligned}$	-	-	-	14
12	$\begin{aligned} & 0.177 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 0.223 \\ & 0.068 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{r} 10.5 \\ 3.2 \\ \hline \end{array}$	$\begin{array}{r} 10.5 \\ 3.2 \\ \hline \end{array}$	$\begin{array}{r} 10.5 \\ 3.2 \\ \hline \end{array}$	$\begin{aligned} & 5.6 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.6 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.2 \\ & 2.8 \end{aligned}$	12
10	$\begin{aligned} & 0.164 \\ & 0.050 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.207 \\ & 0.063 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.9 \\ & 1.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 1.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.9 \\ & 1.8 \\ & \hline \end{aligned}$	10
8	$\begin{aligned} & 0.171 \\ & 0.052 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.213 \\ & 0.065 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.56 \\ & 0.78 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.56 \\ & 0.78 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.56 \\ & 0.78 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.3 \\ & 1.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.26 \\ & 0.69 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.26 \\ & 0.69 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.30 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.1 \\ & \hline \end{aligned}$	8
6	$\begin{aligned} & 0.167 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.210 \\ & 0.064 \end{aligned}$	$\begin{aligned} & 1.61 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 1.61 \\ & 0.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.61 \\ & 0.49 \end{aligned}$	$\begin{aligned} & 2.66 \\ & 0.81 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.66 \\ & 0.81 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.66 \\ & 0.81 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.44 \\ & 0.44 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.48 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.33 \\ & 0.71 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & 0.72 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.36 \\ & 0.72 \\ & \hline \end{aligned}$	6
4	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.197 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.02 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 1.67 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 1.67 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 1.67 \\ & 0.51 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.29 \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 0.46 \end{aligned}$	$\begin{aligned} & 1.51 \\ & 0.46 \end{aligned}$	4
3	$\begin{aligned} & 0.154 \\ & 0.047 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.194 \\ & 0.059 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.35 \\ & 0.41 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.31 \\ & 0.40 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.23 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.24 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.21 \\ & 0.37 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.21 \\ & 0.37 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.21 \\ & 0.37 \\ & \hline \end{aligned}$	3
2	$\begin{aligned} & 0.148 \\ & 0.045 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.187 \\ & 0.057 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.05 \\ & 0.32 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.30 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.98 \\ & 0.30 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.98 \\ & 0.30 \\ & \hline \end{aligned}$	2
1	$\begin{aligned} & 0.151 \\ & 0.046 \end{aligned}$	$\begin{aligned} & 0.187 \\ & 0.057 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.79 \\ & 0.24 \end{aligned}$	$\begin{aligned} & 0.82 \\ & 0.25 \end{aligned}$	1
1/0	$\begin{aligned} & 0.144 \\ & 0.044 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.055 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.12 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.21 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.62 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.66 \\ & 0.20 \\ & \hline \end{aligned}$	$1 / 0$
$2 / 0$	$\begin{aligned} & 0.141 \\ & 0.043 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.16 \end{aligned}$	$2 / 0$
3/0	$\begin{aligned} & 0.138 \\ & 0.042 \end{aligned}$	$\begin{aligned} & 0.171 \\ & 0.052 \end{aligned}$	$\begin{aligned} & 0.253 \\ & 0.077 \end{aligned}$	$\begin{aligned} & 0.269 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.259 \\ & 0.079 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.289 \\ & 0.088 \end{aligned}$	$\begin{aligned} & 0.302 \\ & 0.092 \end{aligned}$	$\begin{aligned} & 0.308 \\ & 0.094 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.14 \end{aligned}$	3/0
4/0	$\begin{aligned} & 0.135 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.167 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.203 \\ & 0.062 \end{aligned}$	$\begin{aligned} & 0.220 \\ & 0.067 \end{aligned}$	$\begin{aligned} & 0.207 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.243 \\ & 0.074 \end{aligned}$	$\begin{aligned} & 0.256 \\ & 0.078 \end{aligned}$	$\begin{aligned} & 0.262 \\ & 0.080 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.11 \end{aligned}$	4/0
250	$\begin{aligned} & 0.135 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.171 \\ & 0.052 \end{aligned}$	$\begin{aligned} & 0.171 \\ & 0.052 \end{aligned}$	$\begin{aligned} & 0.187 \\ & 0.057 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 0.279 \\ & 0.085 \end{aligned}$	$\begin{aligned} & 0.295 \\ & 0.090 \end{aligned}$	$\begin{aligned} & 0.282 \\ & 0.086 \end{aligned}$	$\begin{aligned} & 0.217 \\ & 0.066 \end{aligned}$	$\begin{aligned} & 0.230 \\ & 0.070 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.073 \end{aligned}$	$\begin{aligned} & 0.308 \\ & 0.094 \end{aligned}$	$\begin{aligned} & 0.322 \\ & 0.098 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.10 \end{aligned}$	250
300	$\begin{aligned} & 0.135 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.167 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.144 \\ & 0.044 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.161 \\ & 0.049 \end{aligned}$	$\begin{aligned} & 0.148 \\ & 0.045 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.233 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.249 \\ & 0.076 \end{aligned}$	$\begin{aligned} & 0.236 \\ & 0.072 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.194 \\ & 0.059 \end{aligned}$	$\begin{aligned} & 0.207 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 0.213 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 0.269 \\ & 0.082 \end{aligned}$	$\begin{aligned} & 0.282 \\ & 0.086 \end{aligned}$	$\begin{aligned} & 0.289 \\ & 0.088 \end{aligned}$	300
350	$\begin{aligned} & 0.131 \\ & 0.040 \end{aligned}$	$\begin{aligned} & 0.164 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.141 \\ & 0.043 \end{aligned}$	$\begin{aligned} & 0.128 \\ & 0.039 \end{aligned}$	$\begin{aligned} & 0.200 \\ & 0.061 \end{aligned}$	$\begin{aligned} & 0.217 \\ & 0.066 \end{aligned}$	$\begin{aligned} & 0.207 \\ & 0.063 \end{aligned}$	$\begin{aligned} & 0.174 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.058 \end{aligned}$	$\begin{aligned} & 0.197 \\ & 0.060 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.073 \end{aligned}$	$\begin{aligned} & 0.253 \\ & 0.077 \end{aligned}$	$\begin{aligned} & 0.262 \\ & 0.080 \end{aligned}$	350
400	$\begin{aligned} & 0.131 \\ & 0.040 \end{aligned}$	$\begin{aligned} & 0.161 \\ & 0.049 \end{aligned}$	$\begin{aligned} & 0.108 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.115 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.054 \end{aligned}$	$\begin{aligned} & 0.194 \\ & 0.059 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.161 \\ & 0.049 \end{aligned}$	$\begin{aligned} & 0.174 \\ & 0.053 \end{aligned}$	$\begin{aligned} & 0.184 \\ & 0.056 \end{aligned}$	$\begin{aligned} & 0.217 \\ & 0.066 \end{aligned}$	$\begin{aligned} & 0.233 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 0.240 \\ & 0.073 \end{aligned}$	400
500	$\begin{aligned} & 0.128 \\ & 0.039 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.089 \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.105 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 0.095 \\ & 0.029 \end{aligned}$	$\begin{aligned} & 0.141 \\ & 0.043 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.148 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.141 \\ & 0.043 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.164 \\ & 0.050 \end{aligned}$	$\begin{aligned} & 0.187 \\ & 0.057 \end{aligned}$	$\begin{aligned} & 0.200 \\ & 0.061 \end{aligned}$	$\begin{aligned} & 0.210 \\ & 0.064 \end{aligned}$	500
600	$\begin{aligned} & 0.128 \\ & 0.039 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.023 \end{aligned}$	$\begin{aligned} & 0.092 \\ & 0.028 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.036 \end{aligned}$	$\begin{aligned} & 0.135 \\ & 0.041 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.131 \\ & 0.040 \end{aligned}$	0.144 0.044	$\begin{aligned} & 0.154 \\ & 0.047 \end{aligned}$	$\begin{aligned} & 0.167 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.180 \\ & 0.055 \end{aligned}$	$\begin{aligned} & 0.190 \\ & 0.058 \end{aligned}$	600
750	$\begin{aligned} & 0.125 \\ & 0.038 \end{aligned}$	$\begin{aligned} & 0.157 \\ & 0.048 \end{aligned}$	$\begin{aligned} & 0.062 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.079 \\ & 0.024 \end{aligned}$	$\begin{aligned} & 0.069 \\ & 0.021 \end{aligned}$	$\begin{aligned} & 0.095 \\ & 0.029 \end{aligned}$	$\begin{aligned} & 0.112 \\ & 0.034 \end{aligned}$	$\begin{aligned} & 0.102 \\ & 0.031 \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.036 \end{aligned}$	$\begin{aligned} & 0.131 \\ & 0.040 \end{aligned}$	$\begin{aligned} & 0.141 \\ & 0.043 \end{aligned}$	$\begin{aligned} & 0.148 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.161 \\ & 0.049 \end{aligned}$	$\begin{aligned} & 0.171 \\ & 0.052 \end{aligned}$	750
1000	$\begin{aligned} & 0.121 \\ & 0.037 \end{aligned}$	$\begin{aligned} & 0.151 \\ & 0.046 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.062 \\ & 0.019 \end{aligned}$	$\begin{aligned} & 0.059 \\ & 0.018 \end{aligned}$	$\begin{aligned} & 0.075 \\ & 0.023 \end{aligned}$	$\begin{aligned} & 0.089 \\ & 0.027 \end{aligned}$	$\begin{aligned} & 0.082 \\ & 0.025 \end{aligned}$	$\begin{aligned} & 0.105 \\ & 0.032 \end{aligned}$	$\begin{aligned} & 0.118 \\ & 0.036 \end{aligned}$	$\begin{aligned} & 0.131 \\ & 0.040 \end{aligned}$	$\begin{aligned} & 0.128 \\ & 0.039 \end{aligned}$	$\begin{aligned} & 0.138 \\ & 0.042 \end{aligned}$	$\begin{aligned} & 0.151 \\ & 0.046 \end{aligned}$	1000

TABLE 1 - Alternating-Current Resistance and Reactance for 600-Volt Cables, 3-Phase, $60 \mathrm{~Hz}, 75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ - Three Single Conductors in Conduit

Reference // National Electrical Code Handbook - Mark W. Earley, P.E., Jeffrey S. Sargent, Christopher D. Coache and Richard J. Roux (National Fire Protection Association, Quincy, Massachusetts)

