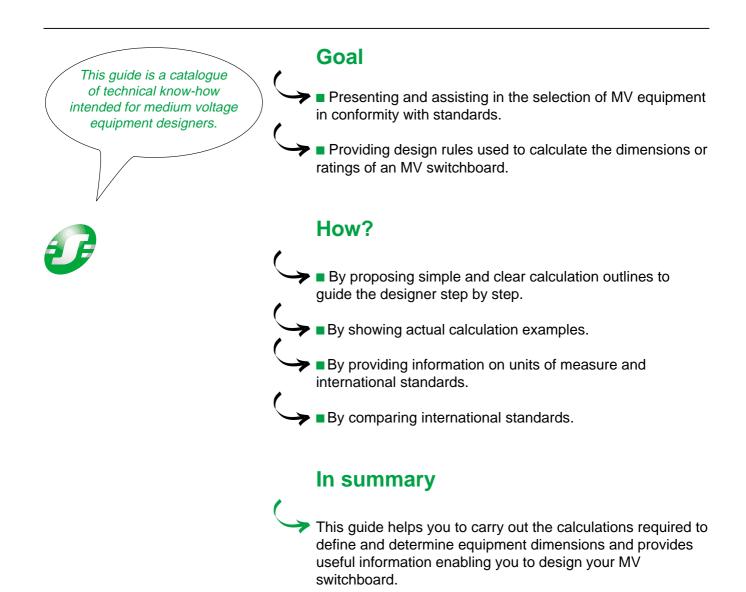

Merlin Gerin technical guide

Medium Voltage


MV design guide

Merlín Gerín Modícon Square D Telemecaníque

Design Guide

General contents

Presentation	5
Metal-enclosed factory-built equipment	5
Voltage	6
Current	8
Frequency Switchgear functions	9 9
Different types of enclosures	10
Design rules	11
Short-circuit power	11
Short-circuit currents	12
Transformer	13
Synchronous generator	14
Asynchronous motor	14
Reminder	15
Three phase calculation example	17
Busbar calculation	21
Thermal withstand	24
Electrodynamic withstand	27
Intransic resonant frequency	29
Busbar calculation example	31
Dielectric withstand	38 38
Dielectric strength of the medium Shape of parts	30
Distance between parts	39
Protection index	41
IP code	41
IK code	41
Switchgear definition	45
Medium voltage circuit breaker	45
Current transformer	54
Voltage transformer	61
Derating	64
Units of measure	67
Basic units	67
Common magnitudes and units	67
Correspondence between Imperial units	
and international system units (SI)	69
Standards	71
Quoted standards	71
IEC-ANSI comparison	72
References	81
Schneider Electric documentation references	81
Index	83

Metal-enclosed, factory-built equipment

To start with, here is some key information on MV switchboards! reference is made to the International Electrotechnical Commission (IEC).

Introduction

In order to design a medium-voltage cubicle, you need to know the following basic magnitudes:

- Voltage
- Current
- Frequency
- Short-circuit power.

The voltage, the rated current and the rated frequency are often known or can easily be defined, but how can we calculate the short-circuit power or current at a given point in an installation?

Knowing the short-circuit power of the network allows us to choose the various parts of a switchboard which must withstand significant temperature rises and electrodynamic constraints. Knowing the voltage (kV) will allow us to define the dielectric withstand of the components. *E.g.: circuit breakers, insulators, CT.*

Disconnection, control and protection of electrical networks is achieved by using switchgear.

- Metal enclosed switchgear is sub-divided into three types:
- □ metal-clad
- □ compartmented □ block.

Schneider Electric

Metal-enclosed, factory-built equipment

Voltage

Operating voltage U (kV)

This is applied across the equipment terminals.

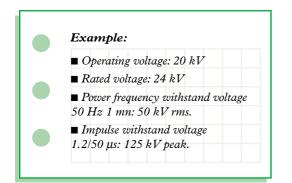
Rated voltage Ur (kV)

Previously known as nominal voltage, this is the maximum rms. (root mean square) value of the voltage that the equipment can withstand under normal operating conditions.

The rated voltage is always greater than the operating voltage and, is associated with an insulation level.

Insulation level Ud (kV rms. 1 mn) and Up (kV peak)

This defines the dielectric withstand of equipment to switching operation overvoltages and lightning impulse.


■ Ud: overvoltages of internal origin, accompany all changes in the circuit: opening or closing a circuit, breakdown or shorting across an insulator, etc...

It is simulated in a laboratory by the rated power-frequency withstand voltage

for one minute.

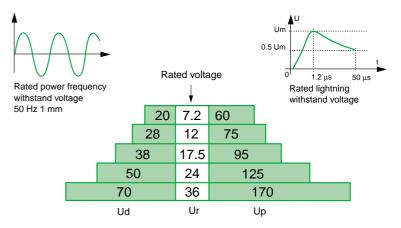
\blacksquare U_P: overvoltages of external origin or atmospheric origin occur when lightning falls on or near a line. The voltage wave that results is simulated in a laboratory and is called the rated lightning impulse withstand voltage.

N.B.: IEC 694, article 4 sets the various voltage values together with, in article 6, the dielectric testing conditions.

Metal-enclosed, factory-built equipment

Standards

Apart from special cases, MERLIN GERIN equipment is in conformity with list 2 of the series 1 table in IEC 60 071 and 60 298.


Rated voltage kV rms.	Rated lightning impulse withstand voltage 1.2/50 μs 50 Hz kV peak		Rated power-frequency withstand voltage 1 minute kV rms.	Normal operating voltage kV rms.
	list 1	list 2		
7.2	40	60	20	3.3 to 6.6
12	60	75	28	10 to 11
17.5	75	95	38	13.8 to 15
24	95	125	50	20 to 22
36	145	170	70	25.8 to 36

Insulation levels apply to metal-enclosed switchgear at altitudes of less than 1 000 metres, 20° C, 11 g/m³ humidity and a pressure of 1 013 mbar. Above this, derating should be considered.

Each insulation level corresponds to a distance in air which guarantees equipment withstand without a test certificate.

Rated voltage kV rms.	Rated impulse withstand voltage 1.2/50 μs kV peak	Distance/earth in air cm
7.2	60	10
12	75	12
17.5	95	16
24	125	22
36	170	32

IEC standardised voltages

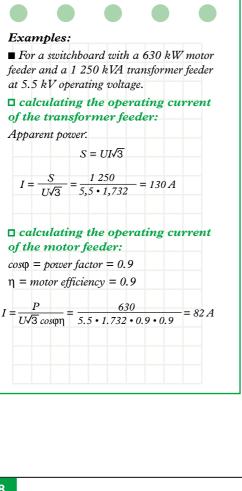
Metal-enclosed, factory-built equipment

Current

Rated normal current: Ir (A)

This is the rms. value of current that equipment can withstand when closed, without exceeding the temperature rise allowed in standards. The table below gives the temperature rises authorised by the IEC according to the type of contacts.

Rated normal current:


Type of mechanism of material	Max. values	
	Max. temperature	Max. temp. rise
	of conductor (°C)	= t°. max 40 °C
contacts in air		
bare copper or copper alloy	75	35
silver or nickel plated	105	65
tin-plated	90	50
bolted connections or equivale	nt devices	
bare copper, bare copper alloy		
or aluminium alloy	90	50
silver or nickel plated	115	75
tin-plated	105	65

N.B.: rated currents usually used by Merlin Gerin are: 400, 630, 1 250, 2 500 and 3 150 A.

Operating current: I (A)

This is calculated from the consumption of the devices connected to the circuit in question. It is the current that really passes through the equipment.

If we do not have the information to calculate it, the customer has to provide us with its value. The operating current can be calculated when we know the power of the current consumers.

Presentation

Metal-enclosed, factory-built equipment

Minimal short-circuit current: lsc (kA rms.)

(see explanation in "Short-circuit currents" chapter.)

Rms value of maximal short-circuit current: Ith (kA rms. 1 s or 3 s)

(see explanation in "Short-circuit currents" chapter.)

Peak value of maximal short-circuit: Idyn (kA peak)

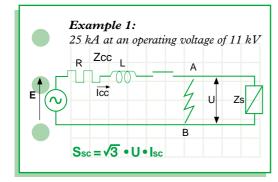
(value of the initial peak in the transient period) (see explanation in "Short-circuit currents" chapter.)

Frequency fr (Hz)

Two frequencies are usually used throughout the world:
 50 Hz in Europe
 60 Hz in America.
 Several countries use both frequencies indiscriminately.

Switchgear functions

Designation and symbol	function	Current swite	:hing fault
Disconnecter		operating	iduit
	isolates		
Earthing disconnecter			
	isolates		(short-circuit closing capacity)
Switch	switches, does not isolate	V	
Disconnecter switch	switches isolates	~	
Fixed circuit breaker	switches protects does not isolate	V	~
Withdrawable circuit breaker	switches protects isolates if withdrawn	V	v
Fixed contactor	switches does not isolate	~	
Withdrawable contactor	switches isolates if withdrawn	v	
Fuse	protects does not isolate		✔ (once)


✔ = YES

Metal-enclosed, factory-built equipment

Different enclosure types

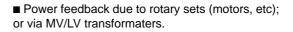
Characteristics	Metal-clad	Compartment	Block-type
Cubicles			
External walls	metal and always earthed		
Number of MV			
compartments	≥3	3	≤ 2
Internal partitions	metal and	indifferent	indifferent
	always	metal	metal
	earthed	or not	or not
Presence of bushings	~	possible	
Shutters to prevent access to live compartments	V	v	
Ease of operations when live	V	V	
Arcing movement within the cubicle	difficult, but always possible	v	 ✓
	✓ = YES		

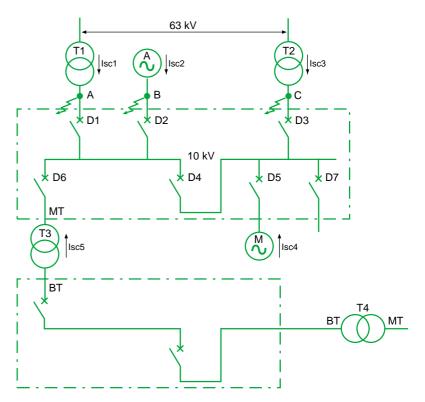
Short-circuit power

Introduction

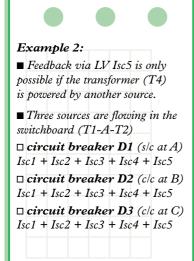
The short-circuit power depends directly on the network configuration and the impedance of its components:

lines, cables, transformers, motors... through which the short-circuit current passes.

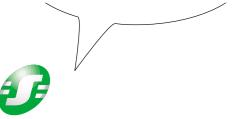

■ It is the maximum power that the network can provide to an installation during a fault, expressed in MVA or in kA rms for a given operating voltage.

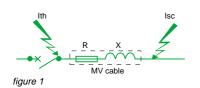

U	:	operating voltage (kV)
lsc	:	short-circuit current (kA rms.) Ref: following pages
The sho	ort-circuit	power can be assimilated to an apparent power.

■ The customer generally imposes the value of short-circuit power on us because we rarely have the information required to calculate it. Determination of the short-circuit power requires analysis of the power flows feeding the short-circuit in the worst possible case.


Possible sources are:

- Network incomer via power transformers.
- Generator incomer.


We have to calculate each of the lsc currents.



Short-circuit currents

All electrical installations have to be protected against short-circuits, without exception, whenever there is an electrical discontinuity; which more generally corresponds to a change in conductor cross-section.

The short-circuit current must be calculated at each stage in the installation for the various configurations that are possible within the network; this is in order to determine the characteristics that the equipment has to have withstand or break this fault current.

■ In order to choose the right switchgear (circuit breakers or fuses) and set the protection functions, three short-circuit values must be known:

□ minimal short-circuit current:

Isc = (kA rms)

(example: 25 kA rms)

This corresponds to a short-circuit at one end of the protected link (fault at the end of a feeder (see fig.1)) and not just behind the breaking mechanism. Its value allows us to choose the setting of thresholds for overcurrent protection devices and fuses; especially when the length of cables is high and/or when the source is relatively impedant (generator, UPS).

□ rms value of maximal short-circuit current:

Ith = (kA rms. 1 s or 3 s) (example: 25 kA rms. 1 s)

This corresponds to a short-circuit in the immediate vicinity of the upstream terminals of the switching device (see fig.1). It is defined in kA for 1 or 3 second(s) and is used to define the thermal withstand of the equipment.

□ peak value of the maximum short-circuit current: (value of the initial peak in the transient period)

Idyn = (kA peak)

(example: 2.5 • 25 kA = 63.75 kA peak IEC 60 056 or 2.7 • 25 kA = 67.5 kA peak ANSI)

- Idyn is equal to:

2.5 • Isc at 50 Hz (IEC) or,
2.6 • Isc at 60 Hz (IEC) or,
2.7 • Isc (ANSI) times the short-circuit current calculated at a given point in the network.

It determines the breaking capacity and closing capacity of circuit breakers and switches, as well as the electrodynamic withstand of busbars and switchgear.

- The IEC uses the following values:

8 - 12.5 - 16 - 20 - 25 - 31.5 - 40 kA rms.

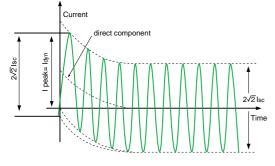
These are generally used in the specifications.

N.B.:

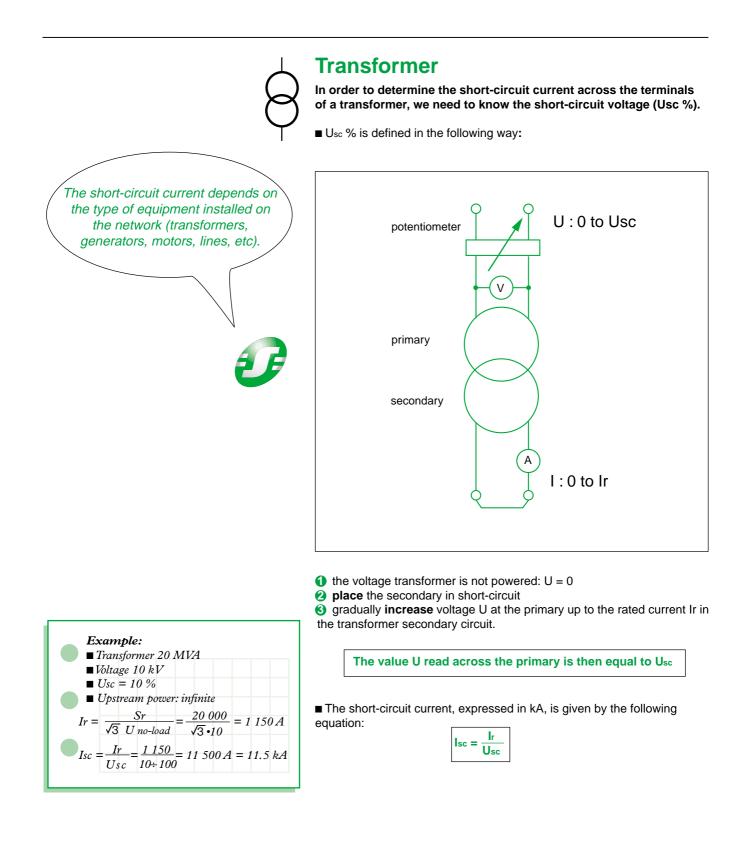
A specification may give one value in kA rms and one value in MVA as below: lsc = 19 kA rms or 350 MVA at 10 kV

□ if we calculate the equivalent current at 350 MVA we find:

$$I_{sc} = \frac{350}{\sqrt{3} \cdot 10} = 20.2 \text{ kA rms}$$


The difference lies in the way in which we round up the value and in local habits. The value 19 kA rms is probably the most realistic.

□ another explanation is possible: in medium and high voltage, IEC 909 applies a coefficient of 1.1 when calculating maximal lsc.


$$U_{sc} = 1, 1 \cdot \frac{U}{\sqrt{3} \cdot Z_{cc}} = \frac{E}{Z_{cc}}$$

(Cf: example 1, p 12 Introduction).

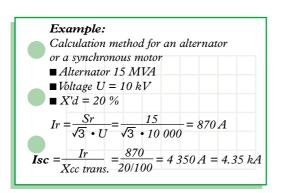
This coefficient of 1.1 takes account of a voltage drop of 10 % across the faulty installation (cables, etc).

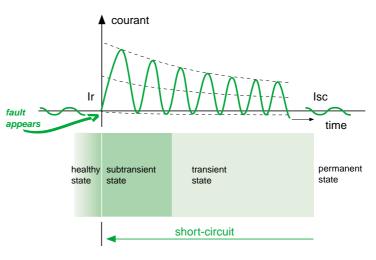
Short-circuit currents

Short-circuit currents

Synchronous generators (alternators and motors)

Calculating the short-circuit current across the terminals of a synchronous generator is very complicated because the internal impedance of the latter varies according to time.


■ When the power gradually increases, the current reduces passing through three characteristic periods:


□ **sub-transient** (enabling determination of the closing capacity of circuit breakers and electrodynamic contraints), average duration, 10 ms

□ transient (sets the equipment's thermal contraints), average duration 250 ms

permanent (this is the value of the short-circuit current in steady state).

■ The short-circuit current is calculated in the same way as for transformers but the different states must be taken account of.

The short-circuit current is given by the following equation:

		$I_{sc} = \frac{I_r}{X_{sc}}$	
Xsc	:	short-circuit reactance c/c	

The most common values for a synchronous generator are:

State	Sub-transient X"d	Transient X'd	Permanent Xd
Xsc	10 - 20 %	15 - 25 %	200 - 350 %

Asynchronous motor

■ For asynchronous motors □ the short-circuit current across the terminals equals the start-up current

□ the contribution of the motors (current feedback) to the short-circuit current is equal to:

The coefficient of 3, takes account of motors when stopped and the impedance to go right through to the fault.

Reminder concerning the calculation of three-phase short-circuit currents

7					
Three-pha	ise sh	ort-circuit			
		- 112	,		
S sc = 1	.1 • U	• $I_{sc} \cdot \sqrt{3} = \frac{U^2}{Z_{sc}}$	-		
		Zso	;		
lsc = -	.1• U	– with Zsc	= √R ² +	• X ²	
√;	3 • Zso	;			
Upstream	netwo	ork			
			0		
$Z = \frac{U^2}{S_s}$	2		$R = \begin{cases} 0.\\ 0. \end{cases}$	3 at 6 kV 2 at 20 kV 1 at 150 kV	
Ss	с		Χ L _{0.}	1 at 150 kV	
Overhead	lines				
- o romedu					
R - 0.4	L		X = 0.4 Ω		HV
R = ρ •	S		$X = 0.3 \Omega$		MV/LV
			$\rho = 1.8.10$ $\rho = 2.8.10$		copper aluminium
			$\rho = 2.8.10$ $\rho = 3.3.10$		almélec
			<u>p</u> 010111		ameree
$Z(\Omega) = \lambda$	Κ (Ω) =	U ² • X _{sc (%)} Sr • 100			
Z(Ω) = X Xsc	X (Ω) = ·	U ² • X _{sc (%)} Sr • 100 sub-transient	trans	ient	permanent
Xsc turbo		sub-transient	15 to	25 %	200 to 350 %
Xsc		sub-transient	15 to		
Xsc turbo exposed pc	bles	sub-transient	15 to	25 %	200 to 350 %
Xsc turbo exposed po Transform	oles ners	sub-transient 10 to 20 % 15 to 25 %	15 to 25 to	25 % 35 %	200 to 350 %
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re	sub-transient 10 to 20 % 15 to 25 %	15 to 25 to data given b	25 % 35 % y manufacturer)	200 to 350 %
Xsc turbo exposed po Transform der of magnitud	oles ners de: for re	sub-transient 10 to 20 % 15 to 25 %	15 to 25 to data given b = 630 kVA	25 % 35 % <i>y manufacturer)</i> x; U _{SC} = 4 %	200 to 350 %
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA	25 % 35 % <i>y manufacturer)</i> x; U _{SC} = 4 %	200 to 350 %
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr =	15 to 25 to data given b = 630 kVA 10 MVA;	25 % 35 % <i>y manufacturer)</i> x; U _{sc} = 4 % U _{sc} = 9 %	200 to 350 % 70 to 120 %
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA)	25 % 35 % <i>y manufacturer)</i> x; Usc = 4 % Usc = 9 % 100 to 3150	200 to 350 % 70 to 120 % 5000 to 500
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; 10 MVA; Sr (kVA) Usc (%)	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5	200 to 350 % 70 to 120 % 5000 to 500 8 to 12
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA)	25 % 35 % <i>y manufacturer)</i> x; Usc = 4 % Usc = 9 % 100 to 3150	200 to 350 % 70 to 120 % 5000 to 5000
Xsc turbo exposed po Transform der of magnitut E.g.: Z (Ω) =	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; 10 MVA; Sr (kVA) Usc (%)	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5	200 to 350 % 70 to 120 % 5000 to 500 8 to 12
Xsc turbo exposed po Transform der of magnitut	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA) Usc (%) () () X = 0.10	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5 MV/LV e at 0.15 Ω/kr	200 to 350 % 70 to 120 % 5000 to 500 8 to 12 HV/MV
Xsc turbo exposed po Transform der of magnitut E.g.: Z (Ω) =	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA) Usc (%) () () X = 0.10	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5 MV/LV	200 to 350 % 70 to 120 % 5000 to 5000 8 to 12 HV/MV
X _{sc} turbo exposed po Transform der of magnitut E.g.: Z (Ω) =	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA) Usc (%) () () X = 0.10	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5 MV/LV e at 0.15 Ω/kr	200 to 350 % 70 to 120 % 5000 to 5000 8 to 12 HV/MV
Xsc turbo exposed po Transform der of magnitut E.g.: Z (Ω) =	oles ners de: for re () 20 () 63	sub-transient 10 to 20 % 15 to 25 % eal values, refer to kV/410 V; Sr = kV/11 V; Sr = Usc(%)	15 to 25 to data given b = 630 kVA 10 MVA; Sr (kVA) Usc (%) () () X = 0.10	25 % 35 % y manufacturer) x; Usc = 4 % Usc = 9 % 100 to 3150 4 to 7.5 MV/LV at 0.15 Ω/kr ased or sing	200 to 350 % 70 to 120 % 5000 to 5000 8 to 12 HV/MV

pensators usient 25% 25% 50% 40% 40% ub-transient Isc $2 5 to 8 lr$ Isc $2 5 to 8 lr$ Isc $2 3 \Sigma lr$, contribution to Isc let (with 1 rated = Ir)	permanent 80 % 100 % 160 %
25 % 50 % 40 % ub-transient Isc	80 % 100 % 160 %
25 % 50 % 40 % ub-transient Isc	80 % 100 % 160 %
40 % ub-transient Isc	100 % 160 %
ub-transient Isc	
lsc	by current feedb
lsc	by current feedb
lsc	by current feedb
contribution to Isc I	by current feedb
	by current feedb
nnonent through a tra	neformor
ge levels in the cable, eral series-mounted tr	
R1, X1 n LV cab	le R2, X2
transformer RT, XT	
impedance at primary	
t location A:	
$\sum X = X_2 + \frac{XT}{n^2} +$	$\frac{X_1}{n^2} + \frac{X_a}{n^2}$
z /x	
φ	
R	
	eral series-mounted tr R1, X1 n LV cat transformer RT, XT impedance at primary t location A: $\sum X = X_2 + \frac{XT}{n^2} + \frac{x}{n^2}$

Short-circuit currents

The complexity in calculating the three-phase short-circuit current basically lies in determining the impedance value in the network upstream of the fault location.

Example of a three-phase calculation

Impedance method

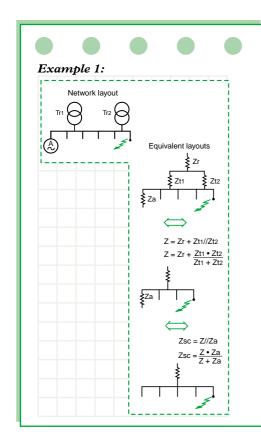
All the components of a network (supply network, transformer, alternator, motors, cables, bars, etc) are characterised by an impedance (Z) comprising a resistive component (R) and an inductive component (X) or so-called reactance. X, R and Z are expressed in ohms.

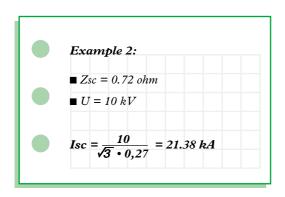
■ The relation between these different values is given by:

(cf. example 1 opposite)

The method involves:

□ breaking down the network into sections


□ calculating the values of R and X for each component


- □ calculating for the network:
- the equivalent value of R or X
- the equivalent value of impedance
- the short-circuit current.

■ The three-phase short-circuit current is:

		$I_{sc} = \frac{U}{\sqrt{3} \cdot Z_{sc}}$
lsc	:	short-circuit current (in kA)
U	:	phase to phase voltage at the point in question before the appearance of the fault, in kV.
Zsc	:	short-circuit impedance (in ohms)

Short-circuit currents

Here is a problem to solve!

Exercice data Supply at 63 kV Short-circuit power of the source: 2 000 MVA Network configuration: Two parallel mounted transformers and an alternator. Equipment characteristics: □ transformers: - voltage 63 kV / 10 kV - apparent power: 1 to 15 MVA, 1 to 20 MVA - short-circuit voltage: U_{sc} = 10 % \Box Alternator : - voltage: 10 kV - apparent power: 15 MVA - X'd transient: 20 % - X"d sub-transient: 15 % ■ Question: determine the value of short-circuit current at the busbars, \Box the breaking and closing capacities of the circuit breakers D1 to D7. Single line diagram Alternator 15 MVA 63 kV X'd = 20 % Transformer Transformer X"d = 15 % Т2 15 MVA 20 MVA T1 G1(∼ Usc = 10 % Usc = 10 % D3 D1 D2 10 kV Busbars D7 D4 D5 D6

Short-circuit currents

the solution	6 -1	the energies	
oblem with the	Solving	the exercise	
ntion method	- Dotomo	nining the nanious shout singui	t our monto
		nining the various short-circui sources which could supply power to th	
		sources which could supply power to the insformers and the alternator.	ie snort-circuit are
		pposing that there can be no feedback	of bower through
		D6 and D7.	-, pocor iniougit
		e of a short-circuit upstream of a circu	it breaker (D1, D2
7		D5, D6, D7), this then has the short-c	
		supplied by T1, T2 and G1.	
		lent diagram	
		ponent comprises a resistance and an	
		o calculate the values for each components	ent.
	I ne netwo	rk can be shown as follows:	
		Zr = netw	ork impedance
		↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Za = alternato	or impedance different	
	according to s (transient or s		
			Z20 = transform
	▼ }	Z15 = transformer impedance 15 MVA	impedance
	ι ξ		20 MVA
		busbars	
	Experience	e shows that the resistance is generally	low compared with
		so we can therefore deduce that the re	
		ance $(X = Z)$.	
		mine the short-circuit power, we have	to calculate the
		ulues of resistances and inductances,	
	then separa	ately calculate the arithmetic sum:	
		Rt = R	
		Xt = X	
		g Rt and Xt, we can deduce the value	of Zt by applying
	equation:		
		$Z = \sqrt{(\Sigma R^2 + \Sigma X^2)}$	
		$Z = \sqrt{(\Delta A + \Delta A)}$	
	N.B.: Since 1	R is negligible compared with X, we can say tha	t Z = X.

Short-circuit currents

And now here are the results!

Component	Calculation	Z = X (ohms)
Network Ssc = 2 000 MVA U op. = 10 kV	$Zr = \frac{U^2}{S_{sc}} = \frac{10^2}{2000}$	0.05
15 MVA transformer (Usc = 10 %) U op. = 10 kV	$Z15 = \frac{U^2}{S_r} \cdot U_{sc} = \frac{10^2}{15} \cdot \frac{10}{100}$	0.67
20 MVA transformer (Usc = 10 %) U op. = 10 kV	$Z20 = \frac{U^2}{S_r} \cdot U_{sc} = \frac{10^2}{20} \cdot \frac{10}{100}$	0.5
15 MVA alternator U op. = 10 kV	$Za = \frac{U^2}{S_r} \bullet X_{sc}$	
Transient state (Xsc = 20 %)	$Zat = \frac{10^2}{15} \cdot \frac{20}{100}$	Zat = 1.33
Sub-transient state (Xsc = 15 %)	$Zas = \frac{10^2}{15} \cdot \frac{15}{100}$	Zas = 1
Busbars Parallel-mounted with the transformers	$Z15//Z20 = \frac{Z15 \bullet Z20}{Z15 + Z20} = \frac{0.67 \bullet 0.5}{0.67 + 0.5}$	Zet = 0.29
Series-mounted with the network and the transformer impedance	Zr + Zet = 0.05 + 0.29	Zer = 0.34
Parallel-mounting of the generator set Transient state	$\frac{\text{Zer}/\text{Zat}}{\text{Zer} + \text{Zat}} = \frac{0.34 \cdot 1.33}{0.34 + 1.33}$	△ 0.27
Sub-transient state	$\frac{\operatorname{Zer}}{\operatorname{Zer}} = \frac{\operatorname{Zer} \cdot \operatorname{Zat}}{\operatorname{Zer}} = \frac{0.34 \cdot 1}{0.34 + 1}$	<u> </u>

Circuit breaker	Equivalent circuit	Breaking capacity	Closing capacity
	Z (ohm)	in kA rms. $I_{cc} = \frac{U^2}{\sqrt{3} \cdot Z_{sc}} = \frac{10}{\sqrt{3}} \cdot \frac{1}{Z_{sc}}$	2.5 I₅c (in kA peak)
D4 to D7			
Zr	transient state Z = 0.27	21.40	21.40 • 2.5 = 53.15
Za Z15 Z20	sub-transient state Z = 0.25		
Zt = [Zr + (Z15//Z20)]//Za			
D3 alternator			
k Zr		17	17 • 2.5 = 42.5
Z15 Z20	Z = 0.34		
Zt = Zr + (Z15//Z20)			
D1 15 MVA transformer		17.9	14.9 • 2.5 = 37.25
≰ Zr	transient state Z = 0.39	11.5	14.0 2.0 - 01.20
<u>کم کم ک</u>	sub-transient state Z = 0.35		
Zt = (Zr + Z20)//Za			
D2 20 MVA transformer			
≹ Zr	transient state Z = 0.47	12.4	12.4 • 2.5 = 31
Za = Z15 Zt = (Zr + Z15)//Za	sub-transient state $Z = 0.42$		

defined for a certain breaking capacity of an rms value in a steady state, and as a percentage of the aperiodic component which depends on the circuit breaker's opening time and on $\frac{R}{X}$ of the network $\frac{X}{X}$ (about 30 %).

N.B.: a circuit breaker is

For alternators the aperiodic component is very high; the calculations must be validated by laboratory tests.

Introduction

The dimensions of busbars are determined taking account of **normal operating conditions**.

The voltage (kV) that the installation operates at determines the phase to phase and phase to earth distance and also determines the height and shape of the supports.

The rated current flowing through the busbars is used to determine the cross-section and type of conductors.

■ We then ensure that the supports (insulators) resist the **mechanical** effects and that the bars resist the **mechanical and thermal effects** due to short-circuit currents.

We also have to check that the period of vibration intrinsic to the bars themselves is not **resonant** with the current period.

■ To carry out a busbar calculation, we have to use the following physical and electrical characteristics assumptions:

Busbar electrical characteristics

Ssc	: network short-circuit power*	MVA
Ur	: rated voltage	kV
U	: operating voltage	kV
Ir	: rated current	Α

* **N.B.:** It is is generally provided by the customer in this form or we can calculate it having the short-circuit current lsc and the operating voltage U: (Ssc = $\sqrt{3}$ • lsc • U; see chapter on "Short-circuit currents").

Physical busbar characteristics							
s	:	busbar cross section	I		cm²		
d	:	phase to phase dista	ince		cm		
l	•	distance between ins for same phase	sulators		cm		
θn	:	ambient temperature	$e (\theta n \le 40^{\circ}C)$		°C		
(θ - θn)	:	permissible tempera	ture rise*		°C		
profile material arrangem	ent	: : :	flat copper flat-mounted	aluminium			
no. of bar(s) per phase :							

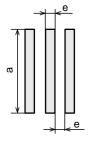
* N.B.: see table V in standard ICE 60 694 on the 2 following pages.

In summary:		
bar(s) of	x	cm per phase

In reality, a busbar calculation involves checking that it provides sufficient thermal and electrodynamic withstand and non-resonance.

E	Temperature rise Taken from table V of stan	dard IEC 60 694	
Type of device, of materia	I and of dielectric	Temperature	(θ - θn)
(Cf: 1, 2 and 3)		θ (°C)	with $\theta_n = 40^{\circ}C$
Bolt connected or equivalent bare copper, bare copper allo		20	50
air		90	50
SF6 *		105	65
oil —		100	60
silver or nickel plated in			
silver or nickel plated in air		115	75
		115 115	75 75
air			-
air SF6		115	75
air SF6 Dil		115	75
air SF6 bil tin-plated in		115 100	75 60

1 According to its function, the same device may belong to several categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are the lowest for category concerned.


- **2** For vacuum switchgear, the limit values of temperature and temperature rise do not apply to vacuum devices. Other devices must not exceed the values for temperature and temperature rise given in table V.
- ³ All the necessary precautions must be taken so that absolutely no damage is caused to surrounding materials.
- 7 When contact components are protected in different ways, the temperature and temperature rises that are allowed are those for the element for which table V authorises the highest values.

Type of device, of material and of dielectric Temperature (θ • θn) (Cf. 1, 2 and 3) 0 (°C) with θn = 40° Contacts (Cf. 4) 90 50 gir 75 35 SF6 * 90 50 oil 80 40 silver or nickel plated (Cf. 5) in 105 65 oil 90 50 silver or nickel plated (Cf. 5) in 90 50 air 90 50 SF6 90 50 oil 90 50 silver or nickel plated (Cf. 5 and 6) in 1 90 50 air 90 50 1 SF6 90 50 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature is given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperature		Ø	Temperature rise Extract from table V of sta	andard IEC 60 694	
(Cf: 1, 2 and 3) θ (°C) with bn = 40° Contacts (Cf: 4) 75 35 copper or bare copper alloy in 75 35 air 75 35 SF6 * 90 50 oil 80 40 air 90 50 air 105 65 SF6 105 65 oil 90 50 air 90 50 silver or nickel plated (Cf: 5) in 90 50 air 90 50 silver or nickel plated (Cf: 5 and 6) in 90 50 air 90 50 50 SF6 90 50 50 silver or categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 2 For vacuum switchgear, the limit values of temperature and temperature rise o not apply to vacuum devices. Other devices must not excernation are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature rise ot take into consideration are lowest or category concerned. 4 <	Type of device, of m	naterial a	nd of dielectric	Temperature	(θ - θn)
copper of bare copper alloy in air 75 35 air 76 30 50 oil 80 40 40 silver or nickel plated (Cf: 5) in air 105 65 65 SF6 105 65 61 oil 90 50 50 ir 90 50 50 silver or nickel plated (Cf: 5 and 6) in air 90 50 air 90 50 56 SF6 90 50 SF6 (sulphur hexalluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temp rise do not apply to vacuum devices. Other devic				-	with $\theta_n = 40^{\circ}$
air 75 35 SF6 * 90 50 oil 80 40 silver or nickel plated (Cf: 5) in air 105 65 SF6 105 65 SF6 50 105 65 SF6 90 50 tin-plated (Cf: 5 and 6) in air 90 50 SF6 90 50 oil 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temp rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: - after the making and breaking test (if it exists), - after the mechanical endurance test, according to specifications specific to each piece of equipment. I this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with set of the contacts must be considered as "bare".	Contacts (Cf: 4)				
SF6* 90 50 oil 80 40 silver or nickel plated (Cf: 5) in 105 65 SF6 105 65 oil 90 50 tin-plated (Cf: 5 and 6) in 90 50 air 90 50 SF6 90 50 oil 90 50 SF6 90 50 oil 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those or element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists),		alloy in			
oil 80 40 silver or nickel plated (Cf: 5) in air 105 65 SF6 105 65 oil 90 50 tin-plated (Cf: 5 and 6) in air 90 50 SF6 90 50 oil 90 50 * SF6 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to several categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: - after the maching and breaking test (if it exists), - after the maching the exit (if it exists), - after the maching and breaking test (if it exists), - after the maching test (if it exists), - after the maching test (if it exists), - after the maching test is to each piece of equipment. this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with a star and the substant and the substant as a substant				-	
silver or nickel plated (Cf: 5) in air SF6 105 65 SF6 105 65 oil tin-plated (Cf: 5 and 6) in air SF6 90 50 SF6 90 50 il 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temp rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: - after the making and breaking test (if it exists), - after the machanical endurance test, according to specifications specific to each piece of equipment. I this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with					
air 105 65 SF6 105 65 oil 90 50 tin-plated (Cf: 5 and 6) in 90 50 SF6 90 50 SF6 90 50 il 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: - after the making and breaking test (if it exists), - after the mechanical endurance test, according to specifications specific to each piece of equipment. this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with		(Cf: 5) in		00	40
oil 90 50 tin-plated (Cf: 5 and 6) in 90 50 air 90 50 SF6 90 50 'SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those or element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. this not be true, the contacts must be considered as "bare". 	-	(0 0)		105	65
tin-plated (Cf: 5 and 6) in 90 50 SF6 90 50 oil 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temperature rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists), after the modenaical endurance test, according to specifications specific to each piece of equipment. It is not be true, the contacts must be considered as "bare". 				105	65
air 90 50 SF6 90 50 oil 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to several categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temp rise do not apply to vacuum devices. Other devices must not exc values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those or element for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with	oil			90	50
 SF6 90 50 50 50 50 50 50 50 50 50 50 50 50 50		in			
oil 90 50 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to several categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temprise do not apply to vacuum devices. Other devices must not excivalues for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those celement for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remain contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the short time withstand current test, acter the mechanical endurance test, according to specifications specific to each piece of equipment. It is not be true, the contacts must be considered as "bare". 					
 * SF6 (sulphur hexafluoride) 1 According to its function, the same device may belong to severa categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. 2 For vacuum switchgear, the limit values of temperature and temprise do not apply to vacuum devices. Other devices must not excivalues for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those celement for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remain contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the making and breaking test (if it exists), after the short time withstand current test, according to specifications specific to each piece of equipment. 6 For fuse contacts, the temperature rise must be in conformity with the source of the short with the contacts must be considered as "bare". 					
 According to its function, the same device may belong to several categories given in table V. In this case, the admissible values of temperature and temperature rise to take into consideration are lowest for category concerned. For vacuum switchgear, the limit values of temperature and temprise do not apply to vacuum devices. Other devices must not excivalues for temperature and temperature rise given in table V. All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. When the contact components are protected in different manner temperatures and temperature rises that are allowed are those celement for which table V authorises the lowest values. The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists), after the mechanical endurance test, according to specifications specific to each piece of equipment. It is not be true, the contacts must be considered as "bare". 	-			90	50
 values for temperature and temperature rise given in table V. 3 All the necessary precautions must be taken so that absolutely r damage is caused to surrounding materials. 4 When the contact components are protected in different manner temperatures and temperature rises that are allowed are those celement for which table V authorises the lowest values. 5 The quality of coating must be such that a protective layer remai contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. It is not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with the second second					
 temperatures and temperature rises that are allowed are those of element for which table V authorises the lowest values. The quality of coating must be such that a protective layer remain contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. It is not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with the protect of the short is an additional temperature rise must be in conformity with the temperature rise must be in conformity with the protect of the short is additional temperature rise must be in conformity with the temperature rise must be in the temperature rise must be the temperature rise must be temperature		value	es for temperature and te	inperature rise give	i in table v.
 contact zone: after the making and breaking test (if it exists), after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. It this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with the statement of the statem					nat absolutely n
 after the short time withstand current test, after the mechanical endurance test, according to specifications specific to each piece of equipment. this not be true, the contacts must be considered as "bare". 6 For fuse contacts, the temperature rise must be in conformity with		dama 4 Whe temp	age is caused to surroun n the contact component peratures and temperatur	ding materials. is are protected in di e rises that are allov	fferent manners
6 For fuse contacts, the temperature rise must be in conformity with		dama 4 Whe temp elem 5 The conta	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone:	ding materials. ts are protected in di re rises that are allow horises the lowest v e such that a protect	fferent manners ved are those o alues.
		4 Whe temp elem 5 The conta - afte - afte acco	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking or the short time withstan- er the mechanical endura ording to specifications sp	ding materials. Is are protected in di re rises that are allow horises the lowest v e such that a protect ng test (if it exists), d current test, ince test, pecific to each piece	ifferent manners ved are those o alues. tive layer remain of equipment. S
		4 Whe temp elem 5 The conta - afte - afte acco	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking or the short time withstan- er the mechanical endura ording to specifications sp	ding materials. Is are protected in di re rises that are allow horises the lowest v e such that a protect ng test (if it exists), d current test, ince test, pecific to each piece	ifferent manners ved are those o alues. tive layer remain of equipment. S
		 dama 4 Whe temp elem 5 The conta - after after according to the second this results of the second temp se	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking er the short time withstan er the mechanical endura ording to specifications sp not be true, the contacts in use contacts, the temper	ding materials. ts are protected in diversion of the rises that are allow horises the lowest with the such that a protect ong test (if it exists), d current test, unce test, becific to each piece must be considered rature rise must be in	ifferent manners ved are those of alues. tive layer remain of equipment. S as "bare".
		 dama 4 Whe temp elem 5 The conta - after after according to the second this results of the second temp se	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking er the short time withstan er the mechanical endura ording to specifications sp not be true, the contacts in use contacts, the temper	ding materials. ts are protected in diversion of the rises that are allow horises the lowest with the such that a protect ong test (if it exists), d current test, unce test, becific to each piece must be considered rature rise must be in	ifferent manners ved are those o alues. tive layer remai of equipment. \$ as "bare".
		 dama 4 Whe temp elem 5 The conta - after after according to the second this results of the second temp se	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking er the short time withstan er the mechanical endura ording to specifications sp not be true, the contacts in use contacts, the temper	ding materials. ts are protected in diversion of the rises that are allow horises the lowest with the such that a protect ong test (if it exists), d current test, unce test, becific to each piece must be considered rature rise must be in	ifferent manners ved are those o alues. tive layer remai of equipment. \$ as "bare".
		 dama 4 Whe temp elem 5 The conta - after after according to the second this results of the second temp se	age is caused to surroun n the contact component peratures and temperatur ient for which table V aut quality of coating must be act zone: er the making and breaking er the short time withstan er the mechanical endura ording to specifications sp not be true, the contacts in use contacts, the temper	ding materials. ts are protected in diversion of the rises that are allow horises the lowest with the such that a protect ong test (if it exists), d current test, unce test, becific to each piece must be considered rature rise must be in	ifferent manne ved are those alues. tive layer rema of equipment. as "bare".

Busbar calculation

Let's check if the cross-section that has been chosen: ... bar(s) of ... x ... cm per phase satisfies the temperature rises produced by the rated current and by the short-circuit current passing through them for 1 to 3 second(s).

perimeter of a bar

Thermal withstand...

For the rated current (Ir)

The MELSON & BOTH equation published in the "Copper Development Association" review allows us to define the permissible current in a conductor:

$$I = K \bullet \frac{24.9 \ (\theta - \theta_n)^{0.61} \bullet S^{0.5} \bullet p^{0.39}}{\sqrt{\rho_{20} \left[1 + \alpha \ (\theta - 20)\right]}}$$

with: T permissible current expressed in amperes (A) derating in terms of current should be considered: - for an ambient temperature greater than 40°C - for a protection index greater than IP5 °C ambient temperature ($\theta_n \leq 40^{\circ}C$) θn °C (θ - θn) permissible temperature rise* : s cm² busbar cross section busbar perimeter cm р ÷ (opposite diagram) $\rho_{\textbf{20}}$ conductor resistivity at 20°C copper: $1.83 \ \mu\Omega \ cm$ $2.90~\mu\Omega~\text{cm}$ aluminium: temperature coefficient of the resistivity: 0.004 α κ conditions coefficient product of 6 coefficients (k1, k2, k3, k4, k5, k6), described below

*(see table V of standard IEC 60 694 in the previous pages)

Definition of coefficients k1, 2, 3, 4, 5, 6:

Coefficient k1 is a function of the number of bar strips per phase for: \Box 1 bar (k1 = 1)

^{□ 2} or 3 bars, see table below:

				e/a	L				
	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.18	0.20
no. of b	ars per pl	hase		k 1					
2	1.63	1.73	1.76	1.80	1.83	1.85	1.87	1.89	1.91
3	2.40	2.45	2.50	2.55	2.60	2.63	2.65	2.68	2.70

In our case:

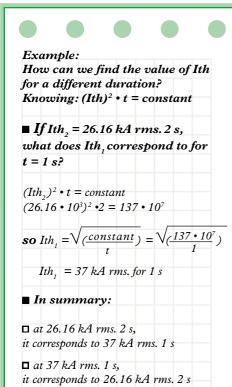
e/a =	
the number of bars per phase =	
giving k1 =	

□ bare: □ painted:	s a function of surface condition of the busbars: k2 = 1 k2 = 1.15
■ Coefficient k3 is	s a function of the position of the bars:
□ edge-mounted ba	
□ 1 bar base-mour	
□ several base-mo	unted bars: $k3 = 0.75$
	s a function of the place where the bars are installed
□ calm indoor atmo	
□ calm outdoor atm	
□ bars in non-venti	lated ducting: $k4 = 0.80$
	s a function of the artificial ventilation:
□ without artificial v	
 ventilation should validated by testing 	d be dealt with on a case by case basis and then
	-
	s a function of the type of current: rront of frequency < 60 Hz, k6 is a function of the
	rrrent of frequency \leq 60 Hz, k6 is a function of the per phase and of their spacing.
	a spacing equal to the thickness of the bars:
	n 1 2 3
	k6 1 1 0.98
• • • •	
IN OUR CASE.	
In our case:	giving k6 =
n =	giving k6 =
	giving k6 =
n =	
n = In fact we have	
n =	
n = In fact we have	
n = In fact we have k =•	
n = In fact we have k =•	
n =	9 () 0.61 •0.5 •0.
n = In fact we have k =•	
n = In fact we have $k = $ $I = $ $24.$	$9 ()^{0.61} \cdot - 20)$
n = In fact we have k =• I =• 24.	$9 ()^{0.61} \cdot - 20)$
n = In fact we have k =• I =• 24.	$9 ()^{0.61} \cdot =$
n = In fact we have k =• I =• 24.	$9 ()^{0.61} \cdot - 20)$
n = In fact we have $k = $ $I = $ $24.$	$9 ()^{0.61} \cdot =$
n = In fact we have $k = $ $I = $ $24.$	$9 ()^{0.61} \cdot =$
n = In fact we have k =• I =• 24.	$\frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{($
n = In fact we have k =• I =• 24.	$9 ()^{0.61} \cdot 0.5 \cdot0.5 \cdot0.5 \cdot$
n = In fact we have $k = $ $I = $ $24.$	$\frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{($
n = In fact we have k =• I =• 24.	$\frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{()} = \frac{9}{($

י ר	The chosen solut	ion	bar(s)
9	of	•	cm per phase
	Is appropriate i	f Ir of the requir	ed busbars $\leq I$

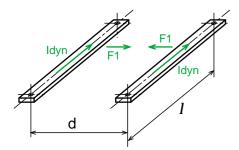
For the short-time withstand current (Ith)

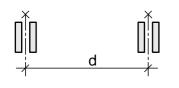
■ We assume that for the whole duration (1 or 3 seconds): □ all the heat that is given off is used to increase the temperature of the conductor

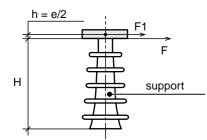

□ radiation effects are negligible.

		(n • S)² •	C ● ð
with: Δθsc	:	short-circuit temperature rise	
c	:	specific heat of the metal copper: aluminium:	0.091 kcal/daN° 0.23 kcal/daN °(
s	:	busbar cross section	
n	:	number of busbar(s) per phase	
lth	:	is the short-time withstand current: (maximum short-circuit current, rms value)
tĸ	:	short-time withstand current duration (1 to	9 3 s)
δ	:	density of the metal copper: aluminium:	8.9 g/cm ³ 2.7 g/cm ³
ρ ₂₀	:	resistivity of the conductor at 20°C copper: aluminium:	1.83 μΩ cm 2.90 μΩ cm
(θ - θn)	:	permissible temperature rise	
$\Delta \theta$ sc =		$\Delta \theta_{\rm sc} = \frac{0.24 \cdot 10^{-6} \cdot (}{(2 - 1)^2 \cdot 10^{-6} \cdot (}$) ² •

Check:


 $\theta_t \leq$ maximum admissible temperature by the parts in contact with the busbars.


Check that this temperature θ_t is compatible with the maximum temperature of the parts in contact with the busbars (especially the insulator).



We have to check if the bars chosen withstand the electrodynamic forces.

Electrodynamic withstand

Forces between parallel-mounted conductors

$$1 = 2\frac{l}{d} \bullet I_{dyn}^2 \bullet 10^{-3}$$

with F1

dvn

force expressed in daN is the peak value of short-circuit expressed in A,

to be calculated with the equation below:

Ssc	: s	hort-circuit power		kVA
lth	: s	hort-time withstand current		A rms
U	: 0	perating voltage		kV
1	: 0	listance between insulators on the same phase		cm
d	: p	hase to phase distance		cm
k	: 2	2.5 for 50 Hz ; 2.6 for 60 Hz for IEC and 2.7 acco	ording to ANSI	-
Giving :	dyn	= A and F1 =	daN	

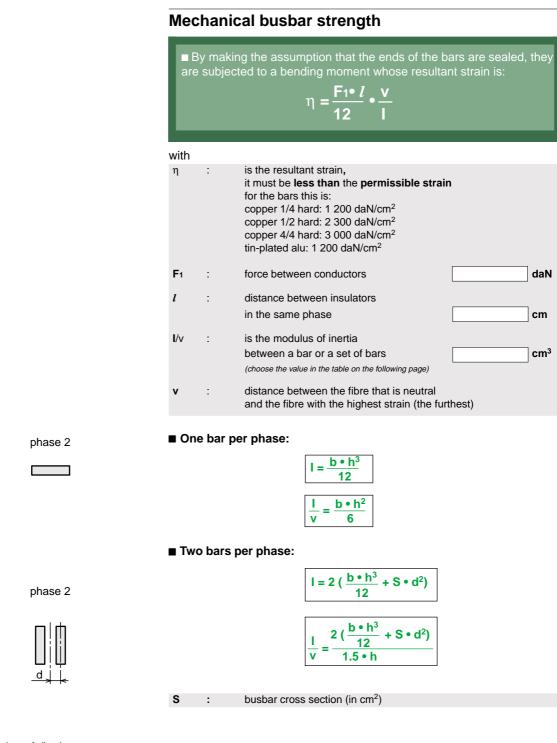
Forces at the head of supports or busducts

Equ	ation to	o calculate the forces on a supp F = F1 • <u>H + h</u> H	
with F H h	:	force expressed insulator height distance from insulator head to busbar centre of gravity	daN cm cm

Calculation of forces if there are N supports

■ The force F absorbed by each support is at most equal to the calculated force F_1 (see previous chapter) multiplied by a coefficient $k_{\text{I\!I}}$ which varies according to the total number N of equidistant supports that are installed. □ number of supports = N

 \Box we know **N**, let us define **k**_n with the help of the table below:


giving F =	(F1)∙			(kn) =		daN
	Ν	2	3	4	≥5	
	k n	0.5	1.25	1.10	1.14	

The force found after applying a coefficient **k** should be compared with the mechanical strength of the support to which we will apply a safety coefficient:

the supports used have a bending resistance

Busbar calculation

xx': perpendicular to the plane of vibration

х'

phase 1

phase 1

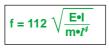
b

х

х'

Х

Q	Check:		
0	η	< η Bars Cu or Al	(in daN/cm ²)


					Busbar	dimensio	ns (mm)				
			100 x 10	80 x 10	80 x 6	80 x 5	80 x 3	50 x 10	50 x 8	50 x 6	50 x 5
	S	cm ²	10	8	4.8	4	2,4	5	4	3	2.5
Arrangement*	m	Cu	0.089	0.071	0.043	0.036	0.021	0.044	0.036	0.027	0.022
	daN/cn	n A5/L	0.027	0.022	0.013	0.011	0.006	0.014	0.011	0.008	0.007
x	1	cm ⁴	0.83	0.66	0.144	0.083	0.018	0.416	0.213	0.09	0.05
x'	l/v	cm ³	1.66	1.33	0.48	0.33	0.12	0.83	0.53	0.3	0.2
	1	cm ⁴	83.33	42.66	25.6	21.33	12.8	10.41	8.33	6.25	5.2
x'	l/v	cm ³	16.66	10.66	6.4	5.33	3.2	4.16	3.33	2.5	2.08
×	1	cm ⁴	21.66	17.33	3.74	2.16	0.47	10.83	5.54	2.34	1.35
x'	l/v	cm ³	14.45	11.55	4.16	2.88	1.04	7.22	4.62	2.6	1.8
x	1	cm ⁴	166.66	85.33	51.2	42.66	25.6	20.83	16.66	12.5	10.41
x'	l/v	cm ³	33.33	21.33	12.8	10.66	6.4	8.33	6.66	5	4.16
	1	cm ⁴	82.5	66	14.25	8.25	1.78	41.25	21.12	8.91	5.16
x'	l/v	cm ³	33	26.4	9.5	6.6	2.38	16.5	10.56	5.94	4.13
×	1	cm ⁴	250	128	76.8	64	38.4	31.25	25	18.75	15.62
x'	l/v	cm ³	50	32	19.2	16	9.6	12.5	10	7.5	6.25

Choose your cross-section S, linear mass m, modulus of inertia I/v, moment of inertia I for the bars defined below:

*arrangement: cross-section in a perpendicular plane to the busbars (2 phases are shown)

Intrinsic resonant frequency

The intrinsic frequencies to avoid for the busbars subjected to a 50 Hz current are frequencies of around 50 and 100 Hz. This intrinsic frequency is given by the equation:

f	:	resonant frequency in Hz		
E	:	modulus of elasticity: for copper = $1.3 \cdot 10^6$ daN/cm ² for aluminium A5/L = $0.67 \cdot 10^6$ daN/cm ²	2	
m	:	linear mass of the busbar		daN/cm
		(choose the value on the table above)		
1	:	length between 2 supports or busducts		cm
I	:	moment of inertia of the busbar cross-se relative to the axis x'x, perpendicular to the vibrating plane		cm⁴
(see formu	ıla p	reviously explained or choose the value i	n the table above	e)

giving

f =

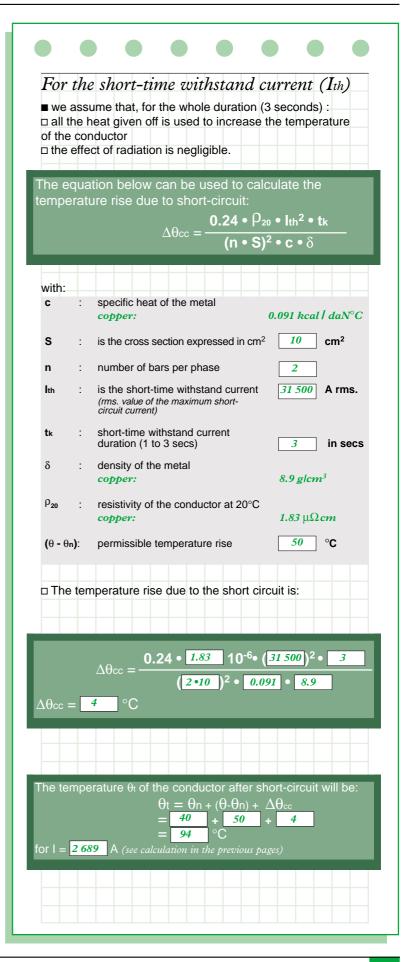
We **must check** that this frequency is outside of the values that must be avoided, in other words between 42 and 58 and 80 and 115 Hz.

Hz

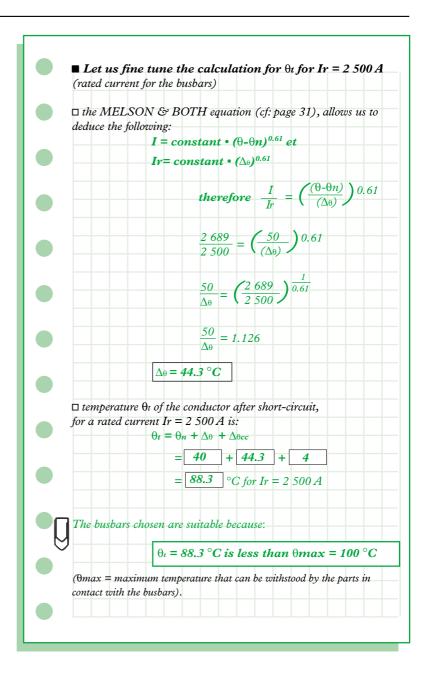
Busbar calculation

		cercise	date	
		Consider	· a swi	itchboard comprised of at least 5 MV cubicles.
	Ea	ch cubic	le has	3 insulators(1 per phase).
		ısbars co ctrically.		ing 2 bars per phase, inter-connect the cubicles
	Bı	ıshar c	hara	cteristics to check:
	S	isour c	:	busbar cross-section (10 \cdot 1) 10 cm ²
	d			phase to phase distance 18 cm
	ŭ		·	
	l		:	distance between insulators 70 cm
				on the same phase
	θn		:	ambient temperature 40 °C
	(θ ·	- θn)	:	permissible temperature rise 50 °C (90-40=50)
	pro	ofile	:	flat
1 Cubicle 2 Cubicle 3 Cubicle 4 Cubicle 5	ma	aterial	:	busbars in copper 1/4 hard, with a permissible strain η = 1 200 daN/cm^2
	arr	angeme	ent:	edge-mounted
	nu	mber of	busb	ar(s) per phase: 2
	- 7	The bush	ars m	ust be able to withstand a rated current
				a permanent basis and a short-time withstand
	cur	rrent I th	= 31,	500 A rms. for a time of $t_k = 3$ seconds.
	-1	Rated fre	equenc	y fr = 50 Hz
		Other ch	aracte	ristics:
				t with the busbars can withstand a maximum
				$max = 100^{\circ}C$
		he supp	mts 11s	ed have a bending resistance of F' = 1 000 daN

d d

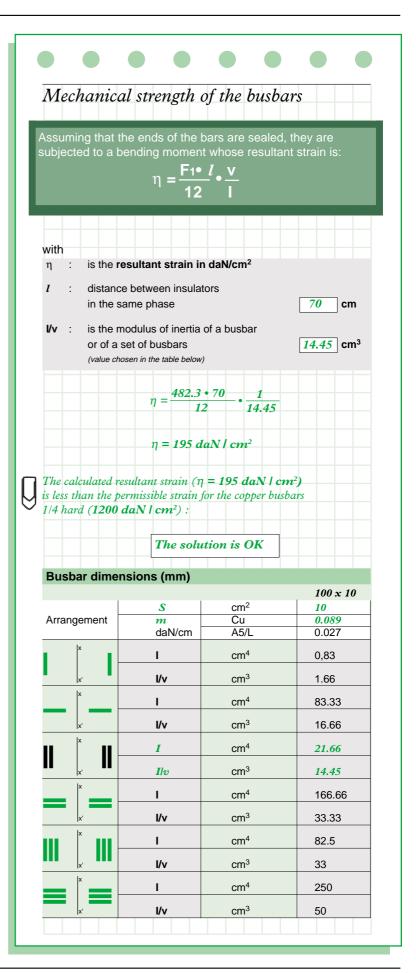

Busbar calculation

Let's check the thermal withstand of the busbars!



• •	• •					
For the	rated current	(Ir)				
	ON & BOTH equati current in the cond I = K •	ductor:				39
with:	: permissible curre	nt expres	ssed in a	amperes	s (A)	
θη	ambient temperat	ure		40	°C	
(θ - θn)	permissible temp	erature ri	se*	50	°C	
S	busbar cross-sec	tion		10	cm²	
p	busbar perimeter			22	cm	
ρ ₂₀	resistivity of the c	onductor	at 20°C	;		
	copper:	····		1.83	μΩ <i>ст</i>	
α	temperature coeff for the resistivity:	licient		0.004	ı	
ĸ	condition coefficie product of 6 coefficie described below		k1, k2, k	3, k4, k	5, k6),	
*(see table V i	n standard CEI 60 694 p	ages 22 a	and 23)			
Definitior	n of coefficients	k1, 2, 3	3, 4, 5,	6:		
per phase □ 1 bar (k1				of bar	strips	
	06 0.08 0.10	0.12 k1	0.14	0.16	0.18	0.20
2 1.63 1.	ars per phase731.76452.502.55	1.83 2.60	1.85 2.63	1.87 2.65	1.89 2.68	1.91 2.70
In our case e/a = number o giving k1	f bars per phase =	-		0.1 2 1.80		

■ Coefficient k2 is a function of the s	urface condition of the bars:
□bare:	k2 = 1
□ painted:	k2 = 1.15
Coefficient k3 is a function of the	husher position
	$k_3 = 1$
<pre>□ edge-mounted busbars: □ 1 bar flat-mounted:</pre>	$k_3 = 0.95$
□ several flat-mounted bars:	$k_3 = 0.35$ $k_3 = 0.75$
Coefficient k4 is a function of wh	nere the bars are installed:
□ calm indoor atmosphere:	k4 = 1
□ calm outdoor atmosphere:	k4 = 1.2
□ bars in non-ventilated ducting:	k4 = 0.80
Coefficient k5 is a function of the	artificial vontilation:
■ coefficient ks is a function of the	k5 = 1
□ cases with ventilation must be trea	
basis and then validated by testing.	-
Coefficient k6 is a function of the	
□ for alternatif current at a frequency	
the number of busbars n per phase a	
The value of k6 for a spacing equal busbars:	to the thickness of the
busbars.	
n 1 2	3
k6 1 <i>1</i>	0.98
In our case:	
n = 2 giving k6	i = 1
n fact, we have:	
	1 • 1 = 1.44
	1 • 1 = 1.44
n fact, we have: < = 1.80 • 1 • 1 • 0.8 •	1 • 1 = 1.44
K = 1.80 • 1 • 1 • 0.8 •	
$x = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 24.9 (90 - 40)^{0.6}$	$1 \cdot 1 = 1.44$ $1 \cdot 10 0.5 \cdot 22 0.39$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{24.9 (90 - 40)^{0.6}}$	1 • <u>10</u> 0.5 • <u>22</u> 0.39
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{24.9 (90 - 40)^{0.6}}$	
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{24.9 (90 - 40)^{0.6}}$	1 • <u>10</u> 0.5 • <u>22</u> 0.39
$x = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)]
$x = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)]
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$ $I = K \cdot \frac{24.9 (0 - 0)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)] . ⁶¹ • S ^{0.5} • p ^{0.39}
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$ $I = K \cdot \frac{24.9 (\theta - \theta n)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)]
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$ $I = K \cdot \frac{24.9 (\theta - \theta n)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)] . ⁶¹ • S ^{0.5} • p ^{0.39}
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (\theta - \theta_n)^{0.6}}{\sqrt{\rho_{20} [1 + 1.00]}}$	$1 \bullet 10 0.5 \bullet 22 0.39$ $04 (90 - 20)]$ $61 \bullet S^{0.5} \bullet p^{0.39}$ $\alpha (\theta - 20)]$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$ $I = K \cdot \frac{24.9 (\theta - \theta n)^{0.6}}{\sqrt{1.83} [1 + 0.06]}$	¹ • <u>10</u> ^{0.5} • <u>22</u> ^{0.39} 04 (<u>90</u> - 20)] . ⁶¹ • S ^{0.5} • p ^{0.39}
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (\theta - \theta_n)^{0.6}}{\sqrt{\rho_{20} [1 + 0.00]}}$	$1 \bullet 10 0.5 \bullet 22 0.39$ $04 (90 - 20)]$ $61 \bullet S^{0.5} \bullet p^{0.39}$ $\alpha (\theta - 20)]$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (\theta - \theta_n)^{0.6}}{\sqrt{\rho_{20} [1 + 0.00]}}$	$1 \bullet 10 0.5 \bullet 22 0.39$ $04 (90 - 20)]$ $61 \bullet S^{0.5} \bullet p^{0.39}$ $\alpha (\theta - 20)]$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot$ $= 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (\theta - \theta_n)^{0.6}}{\sqrt{\rho_{20} [1 + 1.00]}}$ $I = 2.689$	$1 \cdot 10 0.5 \cdot 22 0.39$ $04 \ (90 - 20)]$ $\frac{.61 \cdot S^{0.5} \cdot p^{0.39}}{\alpha \ (\theta - 20)]}$ A
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (0 - 0n)^{0.6}}{\sqrt{\rho_{20} [1 + 1.83]}}$ $I = 2.689$ The chosen solution: 2 busban	$1 \bullet 10 0.5 \bullet 22 0.39$ $04 (90 - 20)]$ $61 \bullet S^{0.5} \bullet p^{0.39}$ $\alpha (\theta - 20)]$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (0 - 0n)^{0.6}}{\sqrt{20} [1 + 1.83]}$ $I = K \cdot \frac{24.9 (0 - 0n)^{0.6}}{\sqrt{20} [1 + 1.83]}$ $I = 2.689$ The chosen solution: 2 busbanis appropriate:	$1 \bullet 10 0.5 \bullet 22 0.39$ $04 (90 - 20)]$ $a^{61} \bullet S^{0.5} \bullet p^{0.39}$ $\alpha (\theta - 20)]$ A $rs \ of \ 10 \bullet 1 \ cm \ per \ phase$
$K = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.80 \cdot 1 \cdot 1 \cdot 0.8 \cdot 1 = 1.44 \cdot \frac{24.9 (90 - 40)^{0.6}}{\sqrt{1.83} [1 + 0.00]}$ $I = K \cdot \frac{24.9 (0 - 0n)^{0.6}}{\sqrt{20} [1 + 1.83]}$ $I = K \cdot \frac{24.9 (0 - 0n)^{0.6}}{\sqrt{20} [1 + 1.83]}$ $I = 2.689$ The chosen solution: 2 busbanis appropriate:	$1 \cdot 10 0.5 \cdot 22 0.39$ $04 \ (90 - 20)]$ $\frac{.61 \cdot S^{0.5} \cdot p^{0.39}}{\alpha \ (\theta - 20)]}$ A



Calculation of θ t must be looked at in more detail because the required busbars have to withstand Ir = 2500 A at mostand not 2 689 A.

Let the ele withstand	's check ctrodynamic of the busbars	s.	

Forces between parallel-mounted conductors
Electrodynamc forces due to the short-circuit
current are given by the equation: $F_1 = 2 \frac{l}{d} \cdot I_{dyn}^2 \cdot 10^{-8}$
(see drawing 1 at the start of the calculation example)
<i>l</i> : distance between insulators in the same phase 70 cm
d : phase to phase distance 18 cm
k : 2.5 for 50 Hz according to IEC
<pre>ldyn : peak value of short-circuit current = k • lth</pre>
$= 2.5 \cdot 31\ 500$ = $78\ 750$ A
F1 = $2 \cdot (70/18) \cdot 78 \ 750^2 \cdot 10^{-8} = 482.3$ daN
Forces at the head of the supports or busducts
Н
with F : force expressed in daN
H : insulator height 12 cm
h : distance from the head of the insulator to the busbar centre of gravity 5 cm
Calculating a force if there are N supports
■ The force F absorbed by each support is at most equal to the force F ₁ that is calulated multiplied by a coefficient k_n which varies according to the total number N of equi-distant supports that are installed.
□ number of supports ≥ 5 = N □ we know N, let us define kn using the table below:
$N 2 3 4 \ge 5$
k n 0.5 1.25 1.10 1.14
giving F = 683 (F1)• 1.14 (kn) = 778 daN
giving $F = 683$ (F1)• 1.14 (kn) = 778 daN The supports used have a bending resistance $F' = 1\ 000\ daN$ calculated force $F = 778\ daN$.
The supports used have a bending resistance

Busbar calculation

Let us check that the chosen busbars do not resonate.

This inherent resonant frequency is given by the equation: $f = 112 \sqrt{\frac{E \cdot I}{m \cdot t^4}}$ f : frequency of resonance in Hz E : modulus of elasticity for copper = 1.3 \cdot 10^6 daNlcm ² m : linear mass of the bar 0.089 daN/cm I : length between 2 supports or busducts 70 cm I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{\left(\frac{1.3 \cdot 10^6 \cdot 21.66}{0.089 \cdot 70^4}\right)}$ f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK	1 7		
current at 50 Hz are frequencies of around 50 and 100 Hz. This inherent resonant frequency is given by the equation: $f = 112 \sqrt{\frac{E \cdot I}{m \cdot t^{2}}}$ f : frequency of resonance in Hz E : modulus of elasticity for copper = 1.3 \cdot 10^{6} daN/cm ² m : linear mass of the bar 0.089 daN/cm I : length between 2 supports or busducts 70 cm I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and 1 on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^{6} \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 \cdot 1 cm per phase, are suitable for an Ir = 2 500 A and			
This inherent resonant frequency is given by the equation: $f = 112\sqrt{\frac{E\cdot I}{m \cdot t^{2}}}$ f : frequency of resonance in Hz E : modulus of elasticity for copper = 1.3 \cdot 10^{6} daN/cm ² m : linear mass of the bar 0.089 daN/cm I : length between 2 supports or busducts 70 cm I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112\sqrt{(1.3 \cdot 10^{6} \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 \cdot 1 cm per phase, are suitable for an Ir = 2 500 A and			
f : frequency of resonance in Hz E : modulus of elasticity for copper = 1.3 • 10 ⁶ daNlcm ² m : linear mass of the bar 0.089 daNlcm l : length between 2 supports or busducts 70 cm l : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 • 1 cm per phase, are suitable for an Ir = 2 500 A and			
f : frequency of resonance in Hz E : modulus of elasticity for copper = $1.3 \cdot 10^6$ daNicm ² m : linear mass of the bar 0.089 daN/cm I : length between 2 supports or busducts 70 cm I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an Ir = 2 500 A and	1 1005 010		y the equation.
E : modulus of elasticity for copper = $1.3 \cdot 10^6 da N cm^2$ m : linear mass of the bar 0.089 daN/cm l : length between 2 supports or busducts 70 cm l : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and 1 on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an Ir = 2 500 A and		$f = 112 \sqrt{\frac{E \cdot I}{m \cdot l^4}}$	
for copper = $1.3 \cdot 10^6$ daN/cm ² m : linear mass of the bar 0.089 daN/cm l : length between 2 supports or busducts 70 cm l : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and l on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f = 406 Hz f = 406 Hz 1 = 100 $1 = 100$ $1 = 100$ $1 = 1001 = 100$ $1 = 100$ $1 = 100$ $1 = 1001 = 100$ $1 = 100$ $1 = 100$ $1 = 100$ $1 = 1001 = 100$ $1 = 1$	f:	frequency of resonance in Hz	
m : linear mass of the bar 0.089 daN/cm I : length between 2 supports or busducts 70 cm I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f = 406 Hz f = 406 Hz $1 = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $1 = 112 (1.3 \cdot $	E :		$1.3 \bullet 10^6 da Nlcm^2$
<i>I</i> : length between 2 supports or busducts 70 cm <i>I</i> : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $0.089 \cdot 70^4$ <i>f</i> is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 \cdot 1 cm per phase, are suitable for an Ir = 2 500 A and			1.5 · 10 uuttern
or busducts 70 cm 1 : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 · 1 cm per phase, are suitable for an Ir = 2 500 A and	m :	linear mass of the bar	0.089 daN/cm
I : moment of inertia of the busbar section relative to the axis x'x perpendicular to the vibrating plane 21.66 cm ⁴ (choose m and I on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $0.089 \cdot 70^4$ f = 406 Hz f = 58 Hz and 80 to 115 Hz: The solution is OK $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz f = 406 Hz $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f = 406 Hz $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ f	<i>l</i> :	length between 2 supports	
relative to the axis x'x perpendicular to the vibrating plane 21.66 cm^4 (choose m and l on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $0.089 \cdot 70^4$ f = 406 Hz f = 400 Hz f = 400 Hz f = 400 Hz f = 400 H		or busducts	70 cm
relative to the axis x'x perpendicular to the vibrating plane 21.66 cm^4 (choose m and l on the table on the previous page) $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $f = 112 \sqrt{(1.3 \cdot 10^6 \cdot 21.66)}$ $0.089 \cdot 70^4$ f = 406 Hz f = 400 Hz f = 400 Hz f = 400 Hz f = 400 H	ı .	moment of inertia of the husbar se	ction
(choose m and I on the table on the previous page) $f = 112 \sqrt{\left(\begin{array}{c} 1.3 \cdot 10^6 \cdot 21.66\\ 0.089 \cdot 70^4 \end{array}\right)}$ f = 406 Hz f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 \cdot 1 cm per phase, are suitable for an Ir = 2 500 A and			ar
$f = 112 \sqrt{\left(\begin{array}{c} 1.3 \cdot 10^{6} \cdot 21.66\\ 0.089 \cdot 70^{4}\end{array}\right)}$ $f = 406 Hz$ $f = 406 $		01	
f = 406 Hz $f = 406 Hz$ $f = 400 Hz$ $f =$	(choose	m and I on the table on the previous page	2
f = 406 Hz $f = 406 Hz$ $f = 400 Hz$ $f =$			
f = 406 Hz $f = 406 Hz$ $f = 400 Hz$ $f =$		$f = 112 \bigvee \left(1.3 \cdot 10 \right)$	$\frac{0^6 \cdot 21.66}{200}$
f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 • 1 cm per phase, are suitable for an Ir = 2 500 A and		0.08	9•70* 7
f is outside of the values that have to be avoided, in other words 42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 • 1 cm per phase, are suitable for an Ir = 2 500 A and		f = 406 Hz	
42 to 58 Hz and 80 to 115 Hz: The solution is OK In conclusion The busbars chosen, i.e. 2 bars of 10 • 1 cm per phase, are suitable for an Ir = 2 500 A and		J - 400 Hz	
In conclusion The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an $Ir = 2500 A$ and	f is out. 42 to 5	side of the values that have to be avo 8 Hz and 80 to 115 Hz:	vided, in other words
The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an $Ir = 2500 A$ and		The solution is OF	ζ
The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an $Ir = 2500 A$ and			
The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an $Ir = 2500 A$ and			
The busbars chosen, i.e. 2 bars of $10 \cdot 1$ cm per phase, are suitable for an $Ir = 2500 A$ and			
per phase, are suitable for an $Ir = 2500 A$ and	In co	nclusion	
per phase, are suitable for an $Ir = 2500 A$ and	In co	nclusion	
per phase, are suitable for an $Ir = 2500 A$ and	In co	nclusion	
Ith = 31.5 kA 3 sec.	The	busbars chosen, i.e. 2	
Image: Sector	The	busbars chosen, i.e. 2	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	
	The per f	busbars chosen, i.e. 2 b bhase, are suitable for an Ir	

Dielectric withstand

A few orders of magnitude Dielectric strength (20°C, 1 bar absolute): 2.9 to 3 kV/mm Ionization limit (20°C, 1 bar absolute): 2.6 kV/mm

- The dielectric withstand depends on the following 3 main parameters:
- □ the dielectric strength of the medium
- □ the shape of the parts
- □ the distance:
- ambient air between the live parts
- insulating air interface between the live parts.

The dielectric strength of the medium

This is a characteristic of the fluid (gas or liquid) making up the medium. For ambient air this characteristic depends on atmospheric conditions and pollution.

The dielectric strength of air depends on the following ambient conditions

Pollution

Conductive dust can be present in a gas, in a liquid, or be deposited on the surface of an insulator.

Its effect is always the same: reducing the insulation performances by a factor of anything up to 10!

Condensation

Phenomena involving the depositing of droplets of water on the surface of insulators which has the effect of locally reducing the insulating performance by a factor of 3.

Pressure

The performance level of gas insulation, is related to pressure. For a device insulated in ambient air, altitude can cause a drop in insulating performance due to the drop in pressure. We are often obliged to derate the device.

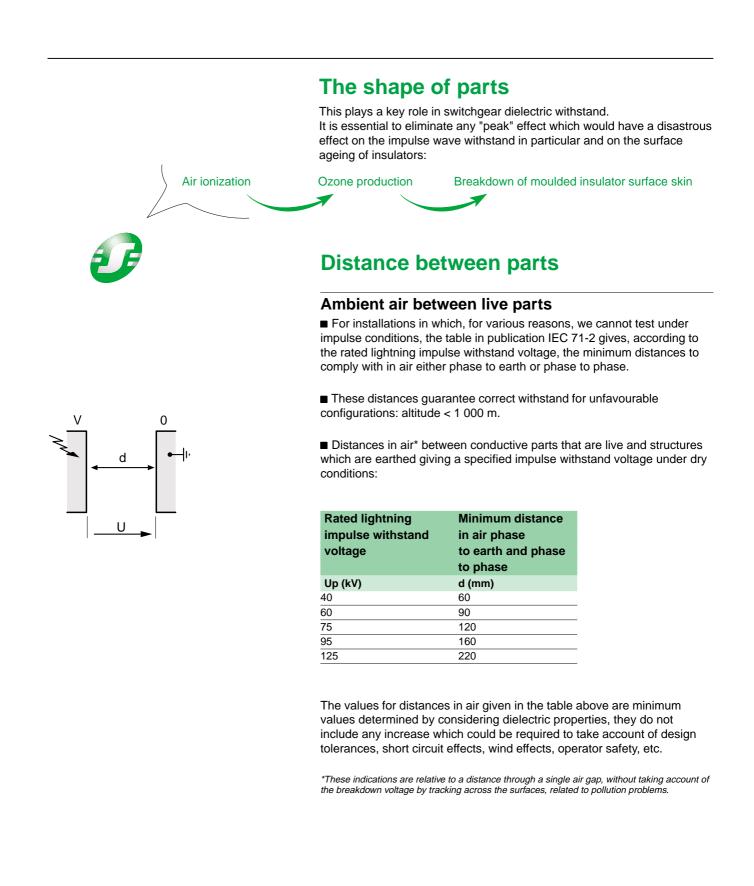
Humidity

In gases and liquids, the presence of humidity can cause a change in insulating performances.

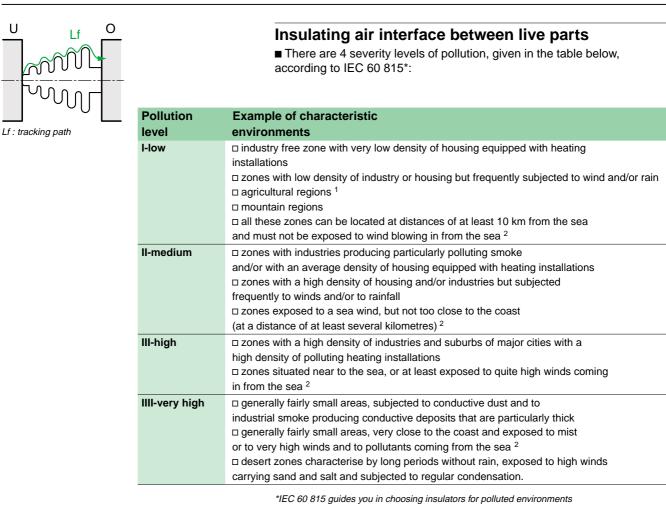
In the case of liquids, it always leads to a drop in performance. In the case of gases, it generally leads to a drop (SF₆, N₂ etc.) apart from air where a low concentration (humidity < 70%) gives a slight improvement in the overall performance level, or so called "full gas performance"*.

Temperature

The performance levels of gaseous, liquid or solid insulation decrease as the temperature increases. For solid insulators, thermal shocks can be the cause of **micro-fissuration** which can lead very quickly to insulator breakdown. Great care must therefore be paid to expansion phenomena: a solid insulator expands by between 5 and 15 times more than a conductor.


* We talk about "full gas" insulation.

Pollution level


Pollution may originate: from the external gaseous medium (dust), initial lack of cleanliness, possibly the breaking down of an internal surface, pollution combined with humidity causes electrochemical conduction which will worsen discharge phenomena.

Its scope can be a constraint of the external medium (exposure to external elements).

Dielectric withstand

Dielectric withstand

¹ The use of sprayed fertilisers or the burning of harvested land can lead to a higher level of pollution due to dispersion by the winds

 2 The distances to the waters edge depends on the topography of the coast region and the extreme conditions of wind.

Protection Index

The IP code

Introduction

Protection of people against direct contact and protection of equipment against certain external influences is required by international standards for electrical installations and products (IEC 60 529).

Knowing the protection index is essential for the specification, installation, operation and quality control of equipment.

Definitions

The protection index is the level of protection provided by an enclosure against access to hazardous parts, the penetration of solid foreign bodies and of water. The IP code is a coding system to indicate the protection index.

Applicational scope

It applies to enclosures for electrical equipment with a rated voltage of less than or equal to 72.5 kV. It does not concern the circuit breaker on its own but the front panel must be adapted when the latter is installed within a cubicle (e.g. finer ventilation grills).

The various IP codes and their meaning

A brief description of items in the IP code is given in the table on the following page.

Design rules

Protection index

Item	Figures	Meaning for protection		Representation
	or letters	of equipment	of people	
Code letter first characteristic figure	IP	against penetration of solid foreign bodies	against access to hazardous parts with	
	0	(not protected)	(not protected)	
	1	diameter ≥ 50 mm	back of the hand	Ø 50mm ()
	2	diameter ≥ 12.5 mm	finger	● Ø 12,5mm (
JZ I	3	diameter ≥ 2.5 mm	tool	() <u>Ø2.</u> 5mm
	4	diameter ≥ 1 mm	wire	Ø 1mm
	5	protected against dust	wire	\bigcirc
	6	sealed against dust	wire	0
second characteristic figure		against penetration of water with detrimental effects		
	<u>0</u> 1	(not protected)		
	1	vertical water drops		
	2	water drops (15° inclination)		
	3	rain		a de la companya de
	4	water projection		
	5	spray projection		
	6	high power spray projection		
	7	temporary immersion		
	8	prolonged immersion		
additional letter (option	nal)		against access to hazardo	ous parts with:
	A		back of the hand	
	В		finger	
	C D		tool	
			wire	
additional letter (option		additional information specific to:		
	H M	high voltage equipment		
	S M	movement during the water testing		
	S W	stationary during the water testing		
	vv	bad weather		

Protection Index

IK code

Introduction

■ Certain countries felt the need also to code the protection provided by enclosures against mechanical impact.

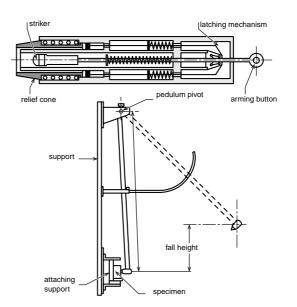
To do this they added a third characteristic figure to the IP code (the case in Belgium, Spain, France and Portugal). But since the adoption of IEC 60 529 as the European standard, no European country can have a different IP code.

■ Since the IEC has up to now refused to add this third figure to the IP code, the only solution to maintain a classification in this field was to create a different code. This is a subject of a draft European standard EN 50102: code IK.

■ Since the third figure in various countries could have different meanings and we had to introduce additional levels to cover the main requirements of product standards, the IK indices have a different meaning to those of the previous third figures (cf. table below).

Previous 3 rd figures of the	IK code
IP code in NF C 20-010 (1986)	
IP XX1	IK 02
IP XX3	IK 04
IP XX5	IK 07
IP XX7	IK 08
IP XX9	IK 10

NB: to limit confusion, each new index is given by a two figure number.


Definitions

The protection indices correspond to impact energy levels expressed in joules

□ hammer blow applied directly to the equipment

□ impact transmitted by the supports, expressed in terms of vibrations therefore in terms of frequency and acceleration

■ The protection indices against mechanical impact can be checked by different types of hammer: pendulum hammer, spring-loaded hammer or vertical free-fall hammer (diagram below).

The various IK codes and their meaning

IK code	IK 01	IK 02	IK 03	IK 04	IK 05	IK 06	IK 07	IK 08	IK 09	IK 10
energies in joules	0.15	0.2	0.35	0.5	0.7	1	2	5	10	20
radius mm ¹	10	10	10	10	10	10	25	25	50	50
material ¹	Р	Р	Р	Р	Р	Р	А	А	А	А
steel = A ²										
polyamide = P ³										
hammer										
pendulum	~	~	~	~	~	~	~	~	~	~
spring loaded 4	~	~	~	~	~	~				
vertical							~	~	~	~

🖌 = yes

N.B.:

¹ of the hammer head
 ² Fe 490-2 according to ISO 1052, hardness 50 HR to 58 HR according to ISO 6508
 ³ hardness HR 100 according to ISO 2039-2

Medium voltage circuit breaker

IEC 60 056 and ANSI C37-06 define on one hand the operating conditions, the rated characteristics, the design and the manufacture; and on the other hand the testing, the selection of controls and installation.

Introduction

■ The circuit breaker is a device that ensures the control and protection on a network. It is capable of making, withstanding and interrupting operating currents as well as short-circuit currents.

- The main circuit must be able to withstand without damage: □ the thermal current = short-circuit current during 1 or 3 s □ the electrodynamic current:
 - 2.5 Isc for 50 Hz (IEC)
 - 2.6 Isc for 60 Hz (IEC)
 - 2.7 Isc (ANSI), for a particular time constant (IEC)

□ the constant load current.

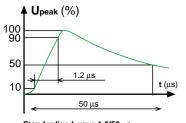
■ Since a circuit breaker is mostly in the "closed" position, the load current must pass through it without the temperature running away throughout the equipment's life.

Characteristics

Compulsory rated characteristics

- Rated voltage
- Rated insulation level
- Rated normal current
- Rated short-time withstand current
- Rated peak withstand current
- Rated short-circuit duration
- Rated supply voltage for opening and closing devices
- and auxiliary circuits
- Rated frequency
- Rated short-circuit breaking current
- Rated transient recovery voltage
- Rated short-circuit making current
- Rated operating sequence
- Rated time quantities.

Special rated characteristics


These characteristics are not compulsory but can be requested for specific applications:

- □ rated out-of-phase breaking current,
- □ rated cable-charging breaking current,
- □ rated line-charging breaking current,
- □ rated capacitor bank breaking current,
- □ rated back-to-back capacitor bank breaking current,
- □ rated capacitor bank inrush making current,
- □ rated small inductive breaking current.

Rated voltage (cf. § 4.1 IEC 60 694)

The rated voltage is the maximum rms. value of the voltage that the equipment can withstand in normal service. It is always greater than the operating voltage.

■ Standardised values for Ur (kV) : 3.6 - 7.2 - 12 - 17.5 - 24 - 36 kV.

Standardised wave 1.2/50 μs

Rated insulation level (cf. § 4.2 IEC 60 056 and 60 694)

The insulation level is characterised by two values: \Box the impulse wave withstand (1.2/50 µs) □ the power frequency withstand voltage for 1 minute.

Rated voltage	Impulse withstand voltage	Power frequency withstand voltage
(Ur in kV)	(Up in kV)	(Ud in kV)
7.2	60	20
12	75	28
17.5	95	38
24	125	50
36	170	70

Rated normal current (cf. § 4.4 IEC 60 694)

With the circuit breaker always closed, the load current must pass through it in compliance with a maximum temperature value as a function of the materials and the type of connections.

IEC sets the maximum permissible temperature rise of various materials used for an ambient air temperature of no greater than 40°C (cf. § 4.4.2 table 3 IEC 60 694).

Rated short-time withstand current (cf. § 4.5 IEC 60 694)

		$I_{SC} = \frac{S_{SC}}{\sqrt{3} \cdot U}$	
Ssc	:	short-circuit power	(in MVA)
U	:	operating voltage	(in kV)
lsc	:	short-circuit current	(in kA)

This is the standardised rms. value of the maximum permissible short-circuit current on a network for 1 or 3 seconds.

■ Values of rated breaking current under maximum short-circuit (kA): 6.3 - 8 - 10 - 12.5 - 16 - 20 - 25 - 31.5 - 40 - 50 kA.

Rated peak withstand current (cf. § 4.6 IEC 60 694) and making current (cf. § 4.103 IEC 60 056)

The making current is the maximum value that a circuit breaker is capable of making and maintaining on an installation in short-circuit.

It must be greater than or equal to the rated short-time withstand peak current.

Isc is the maximum value of the rated short-circuit current for the circuit breakers' rated voltage. The peak value of the short-time withstand current is equal to:

- 2.5 Isc for 50 Hz
- 2.6 Isc for 60 Hz
- 2.7 Isc for special applications.

Rated short-circuit duration (cf. § 4.7 IEC 60 694)

The rated short-circuit is equal to 1 or 3 seconds.

Medium voltage circuit breaker

Rated supply voltage for closing and opening devices and auxiliary circuits (cf. § 4.8 IEC 60 694)

■ Values of supply voltage for auxiliary circuits:
 □ for direct current (dc): 24 - 48 - 60 - 110 or 125 - 220 or 250 volts,
 □ for alternating current (ac): 120 - 220 - 230 - 240 volts.

The operating voltages must lie within the following ranges:
 motor and closing release units:

 -15% to +10% of Ur in dc and ac

 opening release units:

 -30% to +10% of Ur in dc
 -15% to +10% of Ur in ac
 undervoltage opening release unit:

Rated frequency (cf. § 4.9 IEC 60 694)

Two frequencies are currently used throughout the world: 50 Hz in Europe and 60 Hz in America, a few countries use both frequencies. The rated frequency is either 50 Hz or 60 Hz.

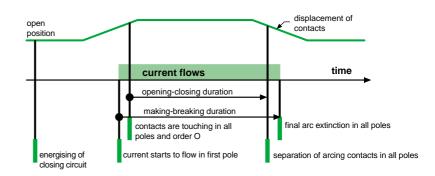
Rated operating sequence (cf. § 4.104 IEC 60 056)

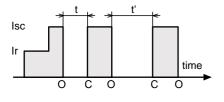
■ Rated switching sequence according to IEC, O - t - CO - t' - CO. (cf: opposite diagram)

0	:	represents opening operation
СО	:	represents closing operation
		followed immediately by an opening operation

Three rated operating sequences exist:

□ slow: 0 - 3 mn - CO - 3 mn - CO

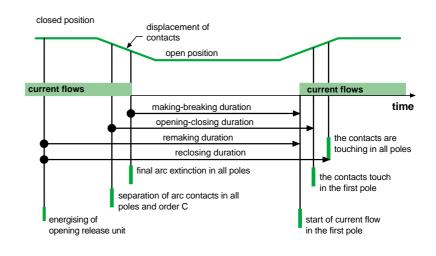

□ quick 1: O - 0.3 s - CO - 3 mn - CO


□ quick 2: O - 0.3 s - CO - 15 s - CO

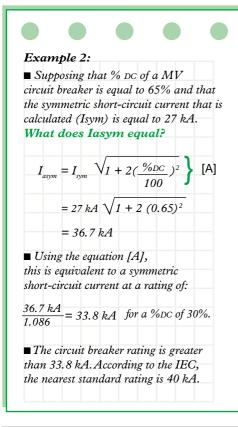
N.B.: other sequences can be requested.

Opening/closing cycle

Assumption: O order as soon as the circuit breaker is closed.



Medium voltage circuit breaker


■ Automatic reclosing cycle

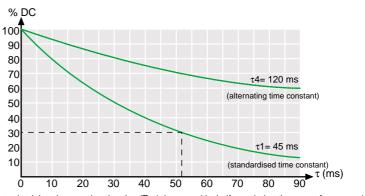
Assumption: C order as soon as the circuit breaker is open, (with time delay to achieve 0.3 sec or 15 secs or 3 min).

Example 1:

• For a circuit breaker with a minimum opening duration of 45 ms (Top) to which we add 10 ms (Tr) due to relaying, the graph gives a percentage of the aperiodic component of around 30 % for a time constant $\tau 1 = 45$ ms: $\%_{DC} = e^{\frac{-(45+10)}{45}} = 29.5$ %

Rated short-circuit breaking current (cf. § 4.101 IEC 60 056)

The rated short-circuit breaking current is the highest value of current that the circuit breaker must be capable of breaking at its rated voltage.

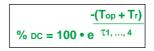

■ It is characterised by two values:

□ the rms. value of its periodic component, given by the term: "rated short-circuit breaking current"

□ the percentage of the aperiodic component corresponding to the circuit breaker's opening duration, to which we add a half-period of the rated frequency. The half-period corresponds to the minimum activation time of an overcurrent protection device, this being 10 ms at 50 Hz.

■ According to IEC, the circuit breaker must break the rms. value of the periodic component of the short-circuit (= its rated breaking current) with the percentage of asymmetry defined by the graphs below.

Percentage of the aperiodic component (% Dc) as a function of the time interval (T)


t : circuit breaker opening duration (Top), increased by half a period at the power frequency (Tr)

■ As standard the IEC defines MV equipment for a %_{DC} of 30%, for a peak value of maximum current equal to $2.5 \cdot \text{Isc}$ at 50 Hz or $2.6 \cdot \text{Isc}$ at 60 Hz. In this case use the τ_1 graph.

Medium voltage circuit breaker

■ For low resistive circuits such as generator incomers, %Dc can be higher, with a peak value of maximum current equal to $2.7 \cdot Isc$. In this case use the τ_4 graph.

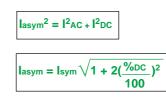
For all constants of between τ_1 and τ_4 , use the equation:

■ Values of rated short-circuit breaking current:

6.3 - 8 - 10 - 12.5 - 16 20 - 25 - 31.5 - 40 - 50 - 100 kA.

Short-circuit breaking tests must meet the five following test sequences:

Sequence	% Isym.	% aperiodic component %⊳c
1	10	≤ 20
2	20	≤ 20
3	60	≤ 20
4	100	≤ 20
5*	100	according to equation

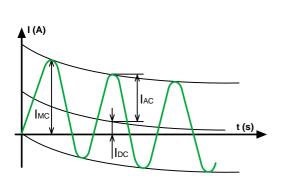

* for circuit breakers opening in less than 80 ms

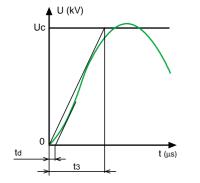
Імс	:	making current
IAC	:	periodic component peak value (Isc peak)
ldc	:	aperiodic component value
%рс	:	% asymmetry or aperiodic component:
		- (Top + Tr)
		ΙDC τ (1,, 4)
		$\frac{1}{1}$ • 100 = 100 • e

Symmetric short-circuit current (in kA):

$$I_{sym} = \frac{I_{AC}}{\sqrt{2}}$$

■ Asymmetric short-circuit current (in kA):

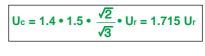

Rated Transient Recovery Voltage (TRV) (cf. § 4.102 IEC 60 056)


This is the voltage that appears across the terminals of a circuit breaker pole after the current has been interrupted. The recovery voltage wave form varies according to the real circuit configuration. A circuit breaker must be able to break a given current for all recovery

voltages whose value remains less than the rated TRV.

First pole factor

For three-phase circuits, the TRV refers to the pole that breaks the circuit initially, in other words the voltage across the terminals of the open pole. The ratio of this voltage to a simple voltage is called the first pole factor, it is equal to 1.5 for voltages up to 72.5 kV.



Value of rated TRV

□ the TRV is a function of the asymmetry, it is given for an asymmetry of 0%.

Rated voltage	TRV value	Time	Delay	Increase rate
(Ur in kV)	(Uc in kV)	(t₃ in µs)	(t₀ in µs)	(Uc/ta in kV/µs)
7.2	12.3	52	8	0.24
12	20.6	60	9	0.34
17.5	30	72	11	0.42
24	41	88	13	0.47
36	62	108	16	0.57

td = 0.15 t3

 \square a specified TRV is represented by a reference plot with two parameters and by a segment of straight line defining a time delay.

Td	:	time delay
t3	:	time defined to reach Uc
Uc	:	peak TRV voltage in kV
TRV incre	ase rate:	Uc/t₃ in kV/μs

$\begin{array}{c|c} X1 & A & B & X2 \\ \hline \\ \hline \\ G & U1 & U2 & G \\ \hline \\ U1 & U2 & G \\ \hline \end{array}$

 $U_A - U_B = U_1 - (-U_2) = U_1 + U_2$ si $U_1 = U_2$ so $U_A - U_B = 2U$

Rated out-of-phase breaking current (cf. § 4.106 IEC 60 056)

When a circuit breaker is open and the conductors are not synchronous, the voltage across the terminals can increase up the sum of voltages in the conductors (phase opposition).

■ In practice, standards require the circuit breaker to break a current equal to 25% of the fault current across the terminals, at a voltage equal to twice the voltage relative to earth.

If U_r is the rated circuit breaker voltage, the recovery voltage (TRV) at power frequency is equal to:

 $\Box 2\sqrt{3}$ Ur for networks with a neutral earthing arrangement $\Box 2.5\sqrt{3}$ Ur for other networks.

■ Peak values for TRV for networks other than those with neutral earthing:

Rated voltage	TRV value	Time	Rate of increase
(Ur in kV)	(U₀ in kV)	(t₃ in μs)	(Uշ/td in kV/µs)
7.2	18.4	104	0.18
12	30.6	120	0.26
17.5	45	144	0.31
24	61	176	0.35
36	92	216	0.43

Rated cable-charging breaking current (cf. § 4 .108 IEC 60 056)

The specification of a rated breaking current for a circuit breaker located at the head of no-load cables is not compulsory and is considered as not being necessary for voltages less than 24 kV.

■ Normal rated breaking current values for a circuit breaker located at the head of no-load cables:

Rated voltage	Rated breaking current for no-load cables
(Ur in kV)	(lc in kA)
7.2	10
12	25
17.5	31.5
24	31.5
36	50

Rated line-charging breaking current (cf. § 4.107 IEC 60 056)

The specification of a rated breaking current for a circuit breaker switch situated at the head of no-load lines is limited to overhead, three-phased lines and to a rated voltage \geq 72 kV.

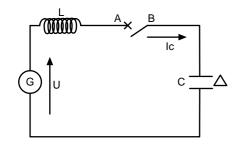
Rated single capacitor bank breaking current (cf. § 4.109 IEC 60 056)

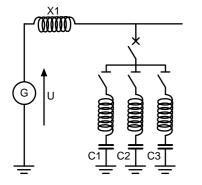
The specification of a breaking current for a circuit breaker switch located upstream of capacitors is not compulsory. Due to the presence of harmonics, the breaking current for capacitors is equal to 0.7 times the device's rated current.

Rated current	Breaking current for capacitors
(A)	(A)
400	280
630	440
1250	875
2500	1750
3150	2200

By definition

The normal value of over-voltage obtained is equal to 2.5 pu, this being:




Rated back-to-back capacitor bank breaking current (cf. § 4.110 IEC 60 056)

The specification of a breaking current for multi-stage capacitor banks is not compulsory.

If \mathbf{n} is equal to the number of stages, then the over-voltage is equal to:

Rated capacitor bank inrush making current (cf. § 4.111 IEC 60 056)

The rated closing current for capacitor banks is the peak current value that the circuit breaker must be capable of making at the rated voltage. The value of the circuit breaker's rated closing current must be greater than the making current for the capacitor bank. In service, the frequency of the pick-up current is normally in the region of 2 - 5 kHz.

Rated small inductive breaking current (cf. § 4.112 IEC 60 056)

The breaking of a low inductive current (several amperes to several tens of amperes) causes overvoltages. The type of circuit breaker will be chosen so that the overvoltages that appear do not damage the insulation of the current consumers (transformer, motors).

The figure opposite shows the various voltages on the load side

Uf	:	instantaneous network voltage value
Uc	:	network voltage at the moment of breaking
Um	:	extinction point
Uif	:	overvoltage relative to earth
Up	:	maximum overvoltage relative to earth
Ud	:	maximum peak-to-peak amplitude of the overvoltage due to restrike.

Insulation level of motors

IEC 60 034 stipulates the insulation level of motors. Power frequency and impulse withstand testing is given in the table below (rated insulation levels for rotary sets).


Insulation	Test at 50 (60) Hz rms. value	Impulse test
Between turns		(4 Ur + 5) kV 4.9 pu + 5 = 31 kV at 6.6 kV (50% on the sample) increase time 0.5 μs
Relative to earth	$(2 \text{ Ur} + 5) \text{ kV}$ $2 \text{ Ur} + 1 \Rightarrow 2(2 \text{ Ur} + 1) \Rightarrow 0$ $14 \text{ kV} \Rightarrow 28 \text{ kV} \Rightarrow 0$ $14 \text{ kV} \Rightarrow 10 \text{ kV}$	(4 Ur + 5) kV 4.9 pu + 5 = 31 kV at 6.6 kV increase time 1.2 μs

Normal operating conditions (cf. IEC 60 694)

For all equipment functioning under other conditions than those described below, derating should be carried out (see derating chapter). Equipment is designed for normal operation under the following conditions:

Temperature

0°C	Installatio	n
Instantaneous ambient	Indoor	Outdoor
minimal	-5°C	-25°C
maximal	+40°C	+40°C
average daily maximum value	35°C	35°C

Medium voltage circuit breaker

Humidity

Average relative humidity	Indoor equipment
for a period	
24 hours	95%
1 month	90%

Altitude

The altitude must not exceed 1 000 metres.

Electrical endurance

The electrical endurance requested by the recommendation is three breaking operations at Isc.

Merlin Gerin circuit breakers are capable of breaking Isc at least 15 times.

Mechanical endurance

The mechanical endurance requested by the recommendation is 2 000 switching operations. Merlin Gerin circuit breakers guarantee 10 000 switching operations.

Co-ordination of rated values (cf. § IEC 60 056)

Rated	Rated short-circuit	Rated	current	in conti	nuous s	ervice	
voltage	breaking current						
Ur (kV)	lsc (kV)	Ir (A)					
3.6	10	400					
	16		630	1250			
	25			1250	1600	2500	
	40			1250	1600	2500	3150
7.2	8	400					
	12.5	400	630	1250			
	16		630	1250	1600		
	25		630	1250	1600	2500	
	40			1250	1600	2500	3150
12	8	400					
	12.5	400	630	1250			
	16		630	1250	1600		
	25		630	1250	1600	2500	
	40			1250	1600	2500	3150
	50			1250	1600	2500	3150
17.5	8	400	630	1250			
	12.5		630	1250			
	16		630	1250			
	25			1250			
	40			1250	1600	2500	3150
24	8	400	630	1250			
	12.5		630	1250			
	16		630	1250			
	25			1250	1600	2500	
	40			1250	1600	2500	3150
36	8		630				
	12.5		630	1250			
	16		630	1250	1600		
	25			1250	1600	2500	
	40			1250	1600	2500	3150

Current transformer

Please note! Never leave a CT in an open circuit.

This is intended to provide a secondary circuit with a current proportional to the primary current.

Transformation ratio (Kn)

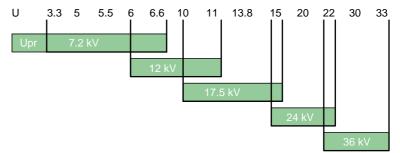
N.B.: current transformers must be in conformity with standard IEC 185 but can also be defined by standards BS 3938 and ANSI.

■ It comprises one or several primary windings around one or several secondary windings each having their own magnetic circuit, and all being encapsulated in an insulating resin.

■ It is dangerous to leave a CT in an open circuit because dangerous voltages for both people and equipment may appear across its terminals.

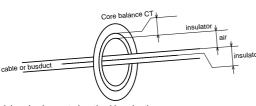
Primary circuit characteristics according to IEC standards

Rated frequency (fr)


A CT defined at 50 Hz can be installed on a 60 Hz network. Its precision is retained. **The opposite is not true**.

Rated primary circuit voltage (Upr)

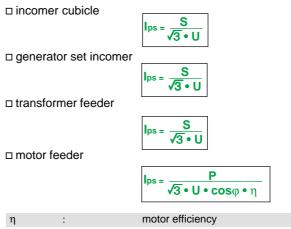
General case:


Rated CT voltage > rated installation voltage

The rated voltage sets the equipment insulation level (see "Introduction" chapter of this guide). Generally, we would choose the rated CT voltage based on the installation operating voltage U, according to the chart:

If the CT is a **core balance CT** installed on a busduct or on a cable. The dielectric insulation is provided by the cable or busducting insulation and the air located between them. The core balance CT is itself insulated.

(sheathed or not sheathed busduct)


Current transformer

Primary operating current (Ips)

An installation's primary operating current I (kA) (for a transformer feeder for example) is equal to the CT primary operating current (lps) taking account of any possible derating.

∎ lf:		
S	:	apparent power in kVA
U	:	primary operating voltage in kV
Р	:	active power of the motor in kW
Q	:	reactive power of capacitors in kvars
lps	:	primary operating current in A

We will have:

Example: A thermal protection device for a motor has a setting range of between 0.6 and 1.2 • Irtc. In order to protect this motor, the required setting must correspond to the motor's rated current. ■ If we suppose that Ir for the motor = 45 A, the required setting is therefore 45 A; \Box if we use a 100/5 CT, the relay will never see 45 A because: $100 \cdot 0.6 = 60 > 45 A.$ \Box if on the other hand, we choose a CT 75/5, we will have: $0.6 < \frac{45}{75} < 1.2$ and therefore we will be able to set our relay. This CT is therefore suitable.

If you do not know the exact values of φ and η , you can take as an initial approximation: $\cos \varphi = 0.8$; $\eta = 0.8$.

□ capacitor feeder

1.3 is a derating coefficient of 30% to take account of temperature rise due to capacitor harmonics.

□ bus sectioning

The current I_{Ps} of the CT is the greatest value of current that can flow in the bus sectioning on a permanent basis.

Rated primary current (Ipr)

The rated current (lpr) will always be greater than or equal to the operating current (l) for the installation.

■ Standardised values:

10 - 12.5 - 15 - 20 - 25 - 30 - 40 - 50 - 60 - 75 and their multiples and factors.

■ For metering and usual current-based protection devices, the rated primary current must not exceed 1.5 times the operating current. In the case of protection, we have to check that the chosen rated current enables the relay setting threshold to be reached in the case of a fault.

N.B.: current transformers must be able to withstand 1.2 times the rated current on a constant basis and this as well must be in conformity with the standards.

Current transformer

In the case of an ambient temperature greater than 40°C for the CT, the CT's nominal current (Ipn) must be greater than Ips multiplied by the derating factor corresponding to the cubicle.

As a general rule, the derating is of 1% Ipn per degree above 40° C. (See "Derating" chapter in this guide).

Rated thermal short-circuit current (Ith)

The rated thermal short-circuit current is generally the rms. value of the installation's maximum short-circuit current and the duration of this is generally taken to be equal to 1 s.

■ Each CT must be able to withstand the short-circuit current which can flow through its primary circuit both thermally and dynamically until the fault is effectively broken.

■ If Ssc is the network short-circuit power expressed in MVA, then:

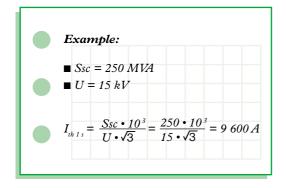
■ When the CT is installed in a fuse protected cubicle, the Ith to use is equal to 80 Ir.

■ If 80 Ir > Ith 1 s for the disconnecting device, then Ith 1 s for the CT = Ith 1 s for the device.

Overcurrent coefficient (Ksi)

Knowing this allows us to know whether a CT will be easy to manufacture or otherwise.

■ It is equal to:



■ The lower Ksi is, the easier the CT will be to manufacture.

A high K_{si} leads to over-dimensioning of the primary winding's section. The number of primary turns will therefore be limited together with the induced electromotive force; the CT will be even more difficult to produce.

Order of magnitude	Manufacture
k si	
Ksi < 100	standard
100 < Ksi < 300	sometimes difficult for certain
	secondary characteristics
100 < Ksi < 400	difficult
400 < Ksi < 500	limited to certain secondary characteristics
Ksi > 500	very often impossible

A CT's secondary circuit must be adapted to constraints related to its use, either in metering or in protection applications.

Current transformer

Secondary circuit's characteristics according to IEC standards

Rated secondary current (Isr) 5 or 1 A?

General case:

- $\Box \text{ for local use } I_{sr} = 5 \text{ A}$ $\Box \text{ for remote use } I_{sr} = 1 \text{ A}$
- Special case:

□ for local use Isr = 1 A

N.B.: Using 5 A for a remote application is not forbidden but leads to an increase in transformer dimensions and cable section, (line loss: $P = R I^2$).

Accuracy class (cl)

- Metering: class 0.5
- Switchboard metering: class 1
- Overcurrent protection: class 10P sometimes 5P
- Differential protection: class X
- Zero-sequence protection: class 5P.

Real power that the TC must provide in VA

This is the sum of the consumption of the cabling and that of each device connected to the TC secondary circuit.

 Example:

 Cable section:
 2.5 mm²

 Cable length (feed/return):
 5.8 m

 Consumed power by the cabling:
 1 VA

Consumption of copper cabling (line losses of the cabling), knowing that: $P = R \cdot I^2$ and $R = \rho \cdot L/S$ then:

	$(VA) = k \cdot \frac{L}{S}$
0.44 :	if Isr = 5 A
0.0176 :	if Isr = 1 A
:	length in metres of link conductors (feed/return)
:	cabling section in mm ²

■ Consumption of metering or protection devices.

Consumption of various devices are given in the manufacturer's technical data sheet.

Rated output

k =

k = L

s

Take the standardised value immediately above the real power that the CT must provide.

■ The standardised values of rated output are: 2.5 - 5 - 10 - 15 - 30 VA.

Safety factor (SF)

■ Protection of metering devices in the case of a fault is defined by the safety factor **SF**. The value of **SF** will be chosen according to the current consumer's short-time withstand current: $5 \le SF \le 10$. **SF** is the ratio between the limit of rated primary current (I_{PI}) and the rated primary current (I_{PT}).

■ I_{pl} is the value of primary current for which the error in secondary current = 10 %.

Current transformer

■ An ammeter is generally guaranteed to withstand a short-time current of 10 Ir, i.e. 50 A for a 5 A device.

To be sure that this device will not be destoyed in the case of a primary fault, the current transformer must be saturated before 10 I_r in the secondary. A safety factory of 5 is suitable.

■ In accordance with the standards, Schneider Electric CT's have a safety factor of 10. However, according to the current consumer characteristic a lower safety factor can be requested.

Accuracy limit factor (ALF)

In protection applications, we have two constraints: having an accuracy limit factor and an accuracy class suited to the application. We will determine the required ALF in the following manner:

Definite time overcurrent protection.

The relay will function perfectly if:

■ For a relay with two setting thresholds, we will use the highest threshold,

□ For a transformer feeder, we will generally have an instantaneous high threshold set at 14 Ir max., giving the real ALF required > 28
 □ for a motor feeder, we will generally have a high threshold set to 8 Ir max., giving a real ALF required > 16.

Inverse definite time overcurrent protection

■ In all cases, refer to the relay manufacturer's technical datasheet. For these protection devices, the CT must guarantee accuracy across the whole trip curve for the relay up to 10 times the setting current.

ΔIF	real	~	20	•	Iro
	i cai	-	20		ii e

■ Special cases:

□ if the maximum short-circuit current is greater than or equal to 10 Ire:

Ire : relay setting threshold □ if the maximum short-circuit current is less than 10 Ire:

□ if the protection device has an instantaneous high threshold that is used, (never true for feeders to other switchboards or for incomers):

Ir2 : instantaneous high setting threshold for the module

Current transformer

Differential protection

Many manufacturers of differential protection relays recommend class X CT's.

■ Class X is often requested in the form of:

 $Vk \le a$. If (Rct + Rb + Rr)

The exact equation is given by the relay manufacturer.

Values characterising the CT

Vk a Ret R♭ Rr	:	Knee-point voltage in volts asymmetry coefficient max. resistance in the secondary winding in Ohms loop resistance (feed/return line) in Ohms resistance of relays not located in the differential part of the circuit in Ohms maximum fault current seen by the CT in the secondary circuit for a fault outside of the zone to be protected $I_{f} = \frac{I_{sc}}{K_{n}}$
lsc Kn	:	primary short-circuit current CT transformation ratio

What values should If be given to determine Vk?

■ The short-circuit current is chosen as a function of the application:

- □ generator set differential
- □ motor differential
- □ transformer differential
- busbar differential.

■ For a generator set differential:

□ if Isc is known: Isc short-circuit current for the generator set on its own

lf	_	sc	
Ľ.		Kn	

□ if the Ir gen is known: we will take

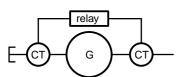
4	_	7 • Ir gen	
	-	Kn	
e	w	ill take	

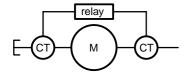
□ if the Ir gen is unknown: we will take If = 7 • Isr (CT) Isr(CT) = 1 or 5 A

For motor differential:

□ if the start-up current is known: we will take

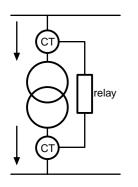
Isc = I start-up	
$I_{f} = \frac{I_{sc}}{K_{n}}$	


□ if the Ir motor is known: we will take


_		
1.	_	7 • Ir
IT	-	Kn

□ if the Ir motor is not known: we will take

knowr	h: we will take
	$\mathbf{I}_{\mathrm{f}} = 7 \bullet \mathbf{I}_{\mathrm{Sr}} \left(\mathrm{CT} \right)$
	Isr(TC) = 1 or 5 A
	rated current


Reminder Ir

:

Current transformer

For a transformer differential

The I_{sc} to take is that flowing through the CT's for a current consumer side fault. In all cases, the fault current value I_f is less than 20 I_{sr(CT)}. \Box if we do not know the exact value, we will take:

For busbar differential

□ the Isc to take is the switchboard Ith

■ For a line differential

The I_{sc} to take is the I_{sc} calculated at the other end of the line, therefore limited by the cable impedance. If the impedance of the cable is not known, we will take the switchboard I_{th} .

Voltage transformer

We can leave a voltage transformer in an open circuit without any danger **but it must never be short-circuited.**

The voltage transformer is intended to provide the secondary circuit with a secondary voltage that is proportional to that applied to the primary circuit.

N.B.: IEC standard 60 186 defines the conditions which voltage transformers must meet.

It comprises a primary winding, a magnetic core, one or several secondary windings, all of which is encapsulated in an insulating resin.

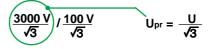
Characteristics

The rated voltage factor (KT)

The rated voltage factor is the factor by which the rated primary voltage has to be multiplied in order to determine the maximum voltage for which the transformer must comply with the specified temperature rise and accuracy recommendations. According to the network's earthing arrangement, the voltage transformer must be able to withstand this maximum voltage for the time that is required to eliminate the fault.

Normal values of t	the rated voltage fac	ctor
Rated voltage	Rated	Primary winding connection mode
factor	duration	and network earthing arrangement
1.2	continuous	phase to phase on any network neutral point to earth for star connected transformers in any network
1.2	continuous	phase to earth in an earthed neutral network
1.5	30 s	
1.2	continuous	phase to earth in a network without an earthed neutral with
1.9	30 s	automatic elimination of earthing faults
1.2	continuous	phase to earth in an isolated neutral network without automatic elimination of earthing faults,
1.9	8 h	or in a compensated network with an extinction coil without automatic elimination of the earthing fault

N.B.: lower rated durations are possible when agreed to by the manufacturer and the user.


Generally, voltage transformer manufacturers comply with the following values: VT phase/earth 1.9 for 8 h and VT phase/phase 1.2 continuous.

Rated primary voltage (Upr)

■ According to their design, voltage transformers will be connected:

□ either phase to earth

or phase to phase

Voltage transformer

Rated secondary voltage (Usr)

■ For phase to phase VT the rated secondary voltage is 100 or 110 V.

For single phase transformers intended to be connected in a phase to earth arrangement, the rated secondary voltage must be divided by $\sqrt{3}$.

$$E.g.:\frac{100V}{\sqrt{3}}$$

Rated output

Expressed in VA, this is the apparent power that a voltage transformer can provide the secondary circuit when connected at its rated primary voltage and connected to the nominal load.

It must not introduce any error exceeding the values guaranteed by the accuracy class. (S = $\sqrt{3}$ UI in three-phase circuits)

Standardised values are:

10 - 15 - 25 - 30 - 50 - 75 - 100 - 150 - 200 - 300 - 400 - 500 VA.

Accuracy class

This defines the limits of errors guaranteed in terms of transformation ratio and phase under the specified conditions of both power and voltage.

Measurement according to IEC 60 186

Classes 0.5 and 1 are suitable for most cases, class 3 is very little used.

Application	Accuracy class
not used industrially	0.1
precise metering	0.2
everyday metering	0.5
statistical and/or instrument metering	1
metering not requiring great accuracy	3

Protection according to IEC 60 186

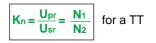
Classes 3P and 6P exist but in practice only class 3P is used.

The accuracy class is guaranteed for values:

 \square of voltage of between 5% of the primary voltage and the maximum value of this voltage which is the product of the primary voltage and the rated voltage factor (kT x Upr)

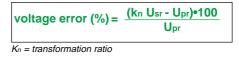
□ for a secondary load of between 25% and 100% of the rated output with a power factor of 0.8 inductive.

Accuracy class	Voltage error as \pm %		Phase shift in minutes		
	between 5% Upr between 2%		between 5% Upr	between 2%	
	and kT • Upr	and 5% Upr	and kT • Upr	and 5% Upr	
3P	3	6	120	240	
6P	6	12	24	480	


Upr = rated primary voltage

kT = voltage factor

phase shift = see explanation next page


Voltage transformer

Transformation ratio (Kn)

Voltage ratio error

This is the error that the transformer introduces into the voltage measurement.

Phase error or phase-shift error

This is the phase difference between the primary voltage U_{pr} and the secondary voltage $U_{\text{sr}}.$ IT is expressed in minutes of angle.

The thermal power limit or rated continuous power

This is the apparent power that the transformer can supply in steady state at its rated secondary voltage without exceeding the temperature rise limits set by the standards.

Derating

Introduction

The various standards or recommendations impose validity limits on device characteristics.

Normal conditions of use are described in the "Medium voltage circuit breaker" chapter.

Beyond these limits, it is necessary to reduce certain values, in other words to derate the device.

Derating must be considered:

 \Box in terms of the insulation level, for altitudes of over 1 000 metres \Box in terms of the rated current, when the ambient temperature exceeds 40°C and for a protection index of over IP3X,

(see chapter on "Protection indices").

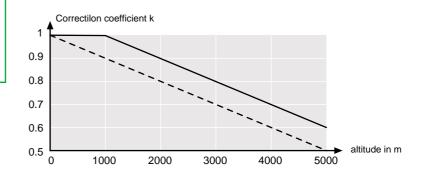
These different types of derating can be accumulated if necessary.

N.B.: there are no standards specifically dealing with derating.

However, table V § 442 of IEC 60 694 deals with temperature rises and gives limit temperature values not to be exceeded according to the type of device, the materials and the dielectric used.

Insulation derating according to altitude

Standards give a derating for all equipment installed at an altitude greater than 1 000 metres.


As a general rule, we have to derate by 1.25 % U peak every 100 metres above 1 000 metres.

This applies for the lightning impulse withstand voltage and the power frequency withstand voltage 50 Hz - 1 mn. Altitude has no effect on the dielectric withstand of circuit breakers in SF6 or vacuum, because they are within a sealed enclosure. Derating, however, must be taken account of when the circuit breaker is installed in cubicles. In this case, insulation is in air.

Merlin Gerin uses correction coefficients:

□ for circuit breakers outside of a cubicle, use the graph below □ for circuit breakers in a cubicle, refer to the cubicle selection guide (derating depends on the cubicle design).

Exception of the Mexican market: derating starts from zero metres (cf. dotted line on the graph below).

Example of application:

Can equipment with a rated voltage of 24 kV be installed at 2500 metres? The impulse withstand voltage required is

125 kV. The power frequency withstand 50 Hz is 50 kV. 1 mn.

■ For 2500 m: □ k is equal to 0.85

□ the impulse withstand must be 125/0.85 = 147.05 kV□ the power frequency withstand 50 Hz must be 50/0.85 = 58.8 kV

 No, the equipment that must be installed is:
 □ rated voltage = 36 kV
 □ impulse withstand = 170 kV
 □ withstand at 50 Hz = 70 kV

N.B.:

if you do not want to supply $36 \, kV$ equipment, we must have the appropriate test certificates proving that our equipment complies with the request.

Derating of the rated current according to temperature

As a general rule, derating is of 1 % Ir per degree above 40°C. IEC standard 60 694 § 442 table 5 defines the maximum permissible temperature rise for each device, material and dielectric with a reference ambient temperature of 40°C.

■ In fact, this temperature rise depends on three parameters: □ the rated current

□ the ambient temperature □ the cubicle type and its IP (protection index).

Derating will be carried out according to the cubicle selection tables, because conductors outside of the circuit breakers act to radiate and dissipate calories.

Units of measure

Names and symbols of SI units of measure

Basic units

Magnitude	Symbol of the magnitude ¹	Unit	Symbol of the unit	Dimension
Basic units				
length	I, (L)	metre	m	L
mass	m	kilogramme	kg	М
time	t	second	S	Т
electrical current	l	ampere	A	I
thermodynamic temperature ²	Т	kelvin	К	θ
quantity of material	n	mole	mol	Ν
light intensity	l, (lv)	candela	cd	J
Additional units				
angle (plane angle)	α, β, γ	radian	rad	N/A
solid angle	Ω, (ω)	steradian	sr	N/A

Common magnitudes and units

Name	Symbol	Dimension	SI Unit: name	Comments
	Cymbol	Dimension	(symbol)	and other units
Magnitude: space and	time			
length	I, (L)	L	metre (m)	centimetre (cm): 1 cm = 10^{-2} m (microns must no monger be used, instead the micrometre (μ m))
area	A, (S)	L ²	metre squared (m ²)	are (a): 1 a = 10^2 m ² hectare (ha): 1 ha = 10^4 m ² (agricult. meas.)
volume	V	L ³	metre cubed (m ³)	
plane angle	α, β, γ	N/A	radian (rad)	gradian (gr): 1 gr = 2π rad/400 revolution (rev): 1 tr = 2π rad degree(°):1°= 2π rad/360 = 0.017 453 3 rad minute ('): 1' = 2π rad/21 600 = 2,908 882 • 10 ⁻⁴ rad second ("): 1" = 2π rad/1 296 000 = 4.848 137 • 10 ⁻⁶ rad
solid angle	Ω, (ω)	N/A	steradian (sr)	
time	t	Т	second (s)	minute (mn) hour (h) day (d)
speed rad/s	v	LT ⁻¹	metre per second (m/s)	revolutions per second (rev/s): 1 tr/s = 2π
acceleration	а	LT ⁻²	metre per second squared (m/s ²)	acceleration due to gravity: $g = 9.80665 \text{ m/s}^2$
angular speed	ω	T-1	radian per second (rad/s)	
angular acceleration	α	T ⁻²	radian per second squared (rad/s ²)	
Magnitude: mass				
mass	m	Μ	kilogramme (kg)	gramme (g) : 1 g = 10^{-3} kg ton (t) : 1 t = 10^{3} kg
linear mass	ρ1	L ⁻¹ M	kilogramme per metre (kg/m)	
mass per surface area	ρΑ' (ρs)	L ⁻² M	kilogramme per metre squared (kg/r	,
mass per volume	ρ	L ⁻³ M	kilogramme per metre cubed (kg/m ³	
volume per mass	V	L ³ M ⁻¹	metre cubed per kilogramme (m ³ /kg)
concentration	ρв	M L ⁻³	kilogramme per metre cubed (kg/m ³)	concentration by mass of component B (according to NF X 02-208)
density	d	N/A	N/A	
Magnitude: periodic ph	enomena			
period	Т	T	second (s)	
frequency	f	T ⁻¹	hertz (Hz)	$1 \text{ Hz} = 1 \text{s}^{-1}, \text{ f} = 1/\text{T}$
phase shift	φ	N/A	radian (rad)	
wavelength	λ	L	metre (m)	use of the angström (10^{-10} m) is forbidden. Use of a factor of nanometre (10^9 m) is recommended $\lambda = c/f = cT$ (c = celerity of light)
power level	Lp	N/A	decibel (dB)	

 e1 the symbol in brackets can also be used 2 the temperature Celsius t is related to the themrodynamic temperature T by the relationship: t = T - 273.15 K

Names and symbols of SI units of measure

Name	Symbol	Dimension	SI Unit:	Comments
Nume	Cymbol	Dimension	name (symbol)	and other units
Magnitude: mechanical			name (symbol)	
force	F	L M T ⁻²	Newton	1 N = 1 m.kg/s ²
weight	G, (P, W)		Nomon	1 1 1 – 1 m.kg/5
moment of the force	M, T	L ² M T ⁻²	Newton-metre (N.m)	N.m and not m.N to avoid any confusion
	, .	2		with the millinewton
surface tension	γ, σ	M T ⁻²	Newton per metre (N/m)	$1 \text{ N/m} = 1 \text{ J/m}^2$
work	W	L ² M T ⁻²	Joule (J)	1 J : 1 N.m = 1 W.s
energy	E	L ² M T ⁻²	Joule (J)	Watthour (Wh) : 1 Wh = $3.6 \cdot 10^3$ J
				(used in determining electrical
				consumption)
power	Р	L ² M T ⁻³	Watt (W)	1 W = 1 J/s
pressure	σ, τ	L ⁻¹ M T ⁻²	Pascal (Pa)	$1 Pa = 1 N/m^2$
	р			(for the pressure in fluids we use bars
dunamia viacositu		L ⁻¹ M T ⁻¹		(bar): 1 bar = 10^5 Pa)
dynamic viscosity	η, μ	L ⁻ MIT ⁻ L ² T ⁻¹	Pascal-second (Pa.s)	$1 P = 10^{-1} Pa.s (P = poise, CGS unit)$
kinetic viscosity	v	L ² I ⁻¹	metre squared per second (m ² /s)	1 St = 10^{-4} m ² /s (St = stokes, CGS unit)
quantity of movement	р		kilogramme-metre per second (kg.m/s)	p = mv
			(kg.ii/s)	
Magnitude: electricity	1	1	Amporo (A)	
current electrical charge	Q	ті	Ampere (A) Coulomb (C)	1 C = 1 A.s
electrical potential	V	L ² M T ⁻³ I ⁻¹	Volt (V)	1 V = 1 W/A
electrical field	E	L M T ⁻³ I ⁻¹	Volt (V) Volt per metre (V/m)	1 v = 1 v v/A
electrical resistance	 R	L ² M T ⁻³ I ⁻²	Ohm (Ω)	$1 \Omega = 1 V/A$
electrical conductivity	G	L ⁻² M ⁻¹ T ³ I ²	Siemens (S)	$1 S_2 = 1 V/A$ 1 S = 1 A/V = 1Ω ⁻¹
electrical capacitance	C	L ⁻² M ⁻¹ T ⁴ I ²	Farad (F)	1 F = 1 C/V
electrical inductance		L ² M T ⁻² I ⁻²	Henry (H)	1 H = 1 Wb/A
	-			111- 1 W0/A
Magnitude: electricity, m	B	M T ⁻² I ⁻¹	Toolo (T)	1 T = 1 Wb/m ²
magnetic induction	<u>р</u> Ф	L ² M T ⁻² I ⁻¹	Tesla (T) Weber (Wb)	1 Wb = 1 V.s
magnetic induction flux	 Ηi, Μ	L- IVI I - I · L-1 I	Ampere per metre (A/m)	1 VVD = 1 V.S
magnetic field	н, м Н	L-1 I		
magneto-motive force	 F, Fm		Ampere per metre (A/m) Ampere (A)	
0		L ³ M T ⁻³ I ⁻²	• • • •	1 μΩ.cm ² /cm = 10 ⁻⁸ Ω.m
resistivity conductivity	ρ	L ⁻³ M ⁻¹ T ³ I ²	Ohm-metre (Ω.m) Siemens per metre (S/m)	$1 \mu s_2.cm^2/cm = 10^{\circ} s_2.m$
permittivity	γ	L ⁻³ M ⁻¹ T ⁴ I ²	Farad per metre (F/m)	
active	ε P	L ³ M T ⁻³	Watt (W)	1 W = 1 J/s
	S	L ² M T ⁻³	Voltampere (VA)	1 W = 1 3/S
apparent power reactive power	 Q	L ² M T ⁻³		1 var = 1 W
·	ч.		var (var)	
Magnitude: thermal	т	ρ	Kolvin (K)	Kolvin and not dogree Kolvin or ^o Kalvin
thermodynamic temperature	Т	θ	Kelvin (K)	Kelvin and not degree Kelvin or °Kelvin
temperature Celsius	t, θ	θ	degree Celsius (°C)	t = T - 273.15 K
energy	E.	L ² M T ⁻²	Joule (J)	(= 1 - 270.10 K
heat capacity	C	L ² M T ⁻² θ ⁻¹	Joule per Kelvin (J/K)	
entropy	S	L ² M T ⁻² θ ⁻¹	Joule per Kelvin (J/K)	
specific heat	<u>с</u>	$L^2 T^{-2} \theta^{-1}$	Watt per kilogramme-Kelvin	
capacity	5	210	(J/(kg.K))	
thermal conductivity	λ	L M T ⁻³ θ ⁻¹	Watt per metre-Kelvin (W/(m.K))	
quantity of heat	Q	L ² M T ⁻²	Joule (J)	
thermal flux	Φ	L ² M T ⁻³	Watt (W)	1 W = 1 J/s
thermal power	P	L ² M T ⁻³	Watt (W)	
coefficient of thermal	hr	M T ⁻³ θ ⁻¹	Watt per metre squared-Kelvin	
radiation			(W/(m ² .K))	

Names and symbols of SI units of measure

Correspondence between Imperial units and international system units (SI)

Magnitude	Unit	Symbol	Conversion
acceleration	foot per second squared	ft/s ²	1 ft/s² = 0.304 8 m/s²
calory capacity	British thermal unit per pound	Btu/lb	1 Btu/lb = 2.326 • 10 ³ J/kg
heat capacity	British thermal unit per cubit foot.degree Fahrenheit	Btu/ft ³ .°F	1 Btu/ft ³ .°F = 67.066 1 • 10 ³ J/m ³ .°C
	British thermal unit per (pound.degree Fahrenheit)	Btu/lb°F	1 Btu/lb.°F = 4.186 8 • 10 ³ J(Kg.°C)
magnetic field	oersted	Oe	1 Oe = 79.577 47 A/m
thermal conductivity	British thermal unit per square foot.hour.degree Fahrenheit	Btu/ft ² .h.°F	1 Btu/ft ² .h.°F = 5.678 26 W/(m ² .°C)
energy	British thermal unit	Btu	1 Btu = 1.055 056 • 10 ³ J
energy (couple)	pound force-foot	lbf/ft	1 lbf.ft = 1.355 818 J
	pound force-inch	lbf.in	1 lbf.in = 0.112 985 J
thermal flux	British thermal unit per square foot.hour	Btu/ft ² .h	1 Btu/ft ² .h = 3.154 6 W/m ²
	British thermal unit per second	Btu/s	1 Btu/s = 1.055 06 • 10 ³ W
force	pound-force	lbf	1 lbf = 4.448 222 N
length	foot	ft, '	1 ft = 0.304 8 m
	inch ⁽¹⁾	in, "	1 in = 25.4 mm
	mile (UK)	mile	1 mile = 1.609 344 km
	knot	-	1 852 m
	yard ⁽²⁾	yd	1 yd = 0.914 4 m
mass	once (ounce)	oz	1 oz = 28.349 5 g ⁽⁶⁾
	pound (livre)	lb	1 lb = 0.453 592 37 kg
linear mass	pound per foot	lb/ft	1 lb/ft = 1.488 16 kg/m
	pound per inch	lb/in	1 lb/in = 17.858 kg/m
mass per surface area	pound per square foot	lb/ft ²	1 lb/ft ² = 4.882 43 kg/m ²
	pound per square inch	lb/in ²	1 lb/in ² = 703,069 6 kg/m ²
mass per volume	pound per cubic foot	lb/ft ³	1 lb/ft ³ = 16.018 46 kg/m ³
	pound per cubic inch	lb/in ³	1 lb/in ³ = 27.679 9 • 10 ³ kg/m ³
moment of inertia	pound square foot	lb.ft ²	1 lb.ft ² = 42.140 g.m ²
pressure	foot of water	ft H ₂ O	1 ft H ₂ O = 2.989 07 • 10 ³ Pa
	inch of water	in H ₂ O	1 in H ₂ O = 2,490 89 • 10 ² Pa
pressure - strain	pound force per square foot	lbf/ft ²	1 lbf/ft ² = 47.880 26 Pa
	pound force per square inch ⁽³⁾	lbf/in ² (psi)	1 lbf/in ² = 6.894 76 • 10 ³ Pa
calorific power	British thermal unit per hour	Btu/h	1 Btu/h = 0.293 071 W
surface area	square foot	sq.ft, ft ²	1 sq.ft = 9.290 3 • 10 ⁻² m ²
	square inch	sq.in, in ²	1 sq.in = 6.451 6 • 10 ⁻⁴ m ²
temperature	degree Fahrenheit ⁽⁴⁾	°F	Tκ = 5/9 (q °F + 459.67)
	degree Rankine ⁽⁵⁾	°R	Tκ = 5/9 q °R
viscosity	pound force-second per square foot	lbf.s/ft ²	1 lbf.s/ft ² = 47.880 26 Pa.s
	pound per foot-second	lb/ft.s	1 lb/ft.s = 1.488 164 Pa.s
volume	cubic foot	cu.ft	1 cu.ft = 1 ft ³ = 28.316 dm ³
	cubic inch	cu.in, in ³	1 in ³ = 1.638 71 • 10 ⁻⁵ m ³
	fluid ounce (UK)	fl oz (UK)	fl oz (UK) = 28.413 0 cm ³
	fluid ounce (US)	fl oz (US)	fl oz (US) = 29.573 5 cm ³
	gallon (UK)	gal (UK)	1 gaz (UK) = 4.546 09 dm ³
	gallon (US)	gal (US)	1 gaz (US) = 3.785 41 dm ³

 $^{(1)}$ 12 in = 1 ft

⁽²⁾ 1 yd = 36 in = 3 ft

⁽³⁾ Or p.s.i.: pound force per square inch ⁽⁴⁾ T_{κ} = temperature kelvin with $q^{\circ}C$ = 5/9 ($q^{\circ}F$ - 32) ⁽⁵⁾ $^{\circ}R$ = 5/9 $^{\circ}K$

⁽⁶⁾ Apart from mass of precious metals (silver, gold, for example) where the carat is used (1 carat = 3.110 35 10² kg)

Standards

The standards mentioned in this document

Where can you order IEC publications? Central Offices of the International Electrotechnical Commission 1, rue de Varembé Geneva - Switzerland. The documentation department (Factory A2) at Merlin Gerin can provide you with information on the standards.

International Electrotechnical Vocabulary	IEC 60 050
High voltage alternating current circuit breakers	IEC 60 056
Current transformers	IEC 60 185
■ Voltage transformers	IEC 60 186
Alternating current disconnectors and earthing disconnectors	IEC 60 129
■ High voltage switches	IEC 60 265
Metal-enclosed switchgear for alternating current at rated voltage of over 1 kV and less than or equal to 72.5 kV	IEC 60 298
High-voltage alternating current combined fuse-switches and combined fuse-circuit breakers	IEC 60 420
High-voltage alternating current contactors	IEC 60 470
Specifications common to high- voltage switchgear standards	IEC 60 694
■ Calculation rules in industrial installations	IEC 60 909
■ Derating	ANSI C37 04

Standards

IEC - ANSI comparison

The following comparison is based on different circuit breaker characteristics.

Overview of the main differences

Theme	ANSI	IEC
asymmetrical breaking	50%	30%
capacity on faults	with current	without derating
across the terminals	derating	
insulation level:	imposes chopped waves	
impulse wave	for outdoor equipment	
	115% Uw/3 s	
	129% Uw/2 s	
short-time withstand	2.7 lsc	2.5•Isc at 50 Hz
current peak		2.6•Isc at 60 Hz
value		2.7•Isc for special cases
Transient Recovery	around twice	
voltage ⁽¹⁾	as severe	
electrical endurance	4 times K.S.Isc	3 times Isc
mechanical endurance	1 500 to 10 000	2 000
	according to Ua and Isc	
motor overvoltages	no text	standard test circuit

⁽¹⁾ the ANSI peak voltage is 10% greater than the voltage defined by the IEC. The E_2/t_2 slope is 50% greater than the Uc/t₃ slope.

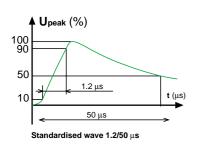
However, the largest part of the graph is the initial part where the SF6 reconstitutes itself. The two standards easily allow the SF6 to reconstitute itself.

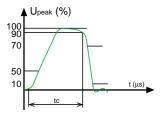
Rated voltages

According to IEC

Standardised values for Ur (kV): 3.6 - 7.2 - 12 - 17.5 - 24 - 36 kV

According to ANSI


■ The ANSI standard defines a class and a voltage range factor K which defines a range of rated voltages at **constant power**.


Standardised values for Ur (kV)						
	class (kV)	Umax (kV)	Umin (kV)	К		
Indoor equipment	4.16	4.76	3.85	1.24		
	7.2	8.25	6.6	1.25		
	13.8	15	11.5	1.3		
	38	38	23	1.65		
Outdoor equipment	15.5			1		
	25			1		
	38			1		

Rated installation level

According to IEC

-		
Rated	Rated lig	ghtning Rated power frequency
voltage	withstar	nd voltage withstand voltage
(kV)	(kV)	50 Hz 1 mm (kV)
7.2	60	20
12	75	28
17.5	95	38
24	125	50
36	170	70

Onde coupée suivant ANSI pour le matériel d'extérieur

According to ANSI

Rated	Rated lightning	Rated power frequency
voltage	withstand voltage	withstand voltage
(kV)	(kV)	50 Hz 1 mm (kV)
Indoor equipment		
4.16	60	19
7.2	95	36
13.8	95	36
38	150	80
Outdoor equipment		
15.5	110	50
25.8	125	60
	150	
38	150	80
	200	

N.B.

BIL: Basic Insulation Level

The outdoor equipment is tested with chopped waves.

The impulse withstand is equal to:

1.29 BIL for a duration of $tc = 2 \mu s$

1.15 BIL for a duration $tc = 3 \mu s$

Rated normal current

According to IEC

■ Values of rated current: 400 - 630 - 1250 - 1600 - 2500 - 3150 A

According to ANSI

Values of rated current: 1200 - 2000 - 3000 A

Short-time withstand current

According to IEC

■ Values of short-circuit rated breaking capacity: 6.3 - 8 - 10 - 12.5 - 16 - 20 - 25 - 31.5 - 40 - 50 - 63 kA

According to ANSI

■ Values of short-circuit rated breaking capacity: □ indoor equipment: **12.5 - 20 - 25 - 31.5 - 40 kA** □ outdoor equipment:

Class (MVA)	Breaking capacity (kA)		
	I at U _{max}	KI at Umin	
250	29	36	
350	41	49	
500	18	23	
750	28	36	
1000	37	46	
1500	21	35	
2750	40	40	

Peak value of short-time current and closing capacity

According to IEC

- The peak value of short-time withstand current is equal to:
- □ 2.5•Isc at 50 Hz
- □ **2.6•I**sc at 60 Hz
- □ 2.7•Isc for special cases.

According to ANSI

- The peak value of short-time withstand current is equal to:
- □ 2.7 K Isc at peak value
- □ 1.6 K Isc at rms. value.
- (K : voltage factor)

Rated short-circuit duration

According to IEC

■ The rated short-circuit duration is equal to 1 or 3 seconds.

According to ANSI

■ The rated short-circuit duration is equal to 3 seconds.

Rated supply voltage for closing and opening devices and auxiliary circuits

According to IEC

Supply voltage values for auxiliary circuits:

□ for direct current (dc): **24 - 48 - 60 - 110 or 125 - 220 or 250 volts** □ for alternating current (ac): **120 - 220 - 230 - 240 volts.**

Operating voltages must fall within the following ranges:

- □ Motor and closing release units:
- -15% to +10% of Ur in dc et ac
- □ opening release units:

-15% to +10% of Ur in ac; -30% to +10% of Ur in dc

□ undervoltage opening release units

the release the comman forbids close	nd and	the release unit must not have an action	_U
0 %	35 %	70 % 10	0 %
		(at 85%, the release unit m the device to close)	ust enable

According to ANSI

- Supply voltage values for auxiliary circuits:
- □ for direct current (dc): 24 48 125 250 volts.
- □ for alternating (ac): 120 240 volts

■ Operating voltage must fall within the following ranges:

1 0 0	0 0
Voltage	Voltage range (V)
Motor and closing release units	
48 Vsc	36 to 56
125 Vsc	90 to 140
250 Vsc	180 to 280
120 Vac	104 to 127
240 Vac	208 to 254
Opening release units	
24 Vsc	14 to 28
48 Vsc	28 to 56
125 Vsc	70 to 140
250 Vsc	140 to 220
120 Vac	104 to 127
240 Vac	208 to 254

Rated frequency

- According to IEC
- Rated frequency: **50 Hz.**

According to ANSI

■ Rated frequency: 60 Hz.

Short-circuit breaking capacity at the rated operating sequence

■ ANSI specifies 50% asymmetry and IEC 30%. In 95% of applications, 30% is sufficient. When 30% is too low, there are specific cases (proximity of generators) for which the asymmetry may be greater than 50%.

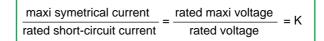
■ For both standard systems, the designer has to check the circuit breaker breaking capacity. The difference is not important because without taking account of the asymmetry factor "S", it is equal to 10%.

ANSI: lasym = Isym $\sqrt{(1 + 2 A^2)}$ = 1.22 Isym (A = 50%) IEC: lasym = Isym $\sqrt{(1 + 2 A^2)}$ = 1.08 Isym (A = 30%)

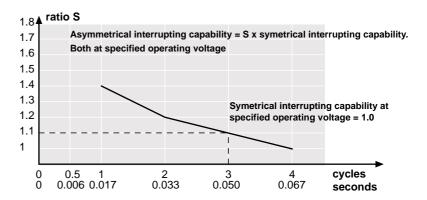
According to IEC

Short-circuit breaking tests must meet the following 5 test sequences:

Sequence n°	% Isym	% aperiodic component
1	10	≤ 20
2	20	≤ 20
3	60	≤ 20
4	100	≤ 20
5*	100	30


* for circuit breakers opening at least 80 ms

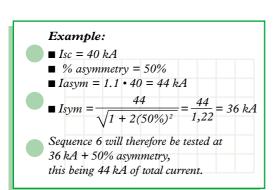
According to ANSI


The circuit breaker must be able to break:

□ the rated short circuit current at the rated maximum voltage □ K times the rated short-circuit current (maxi symmetrical interrupting capability with K: voltage range factor) at the operating voltage (maximum voltage/K)

□ between the two currents obtained by the equation:

We therefore have a constant breaking power (in MVA) over a given voltage range. Moreover, the asymmetrical current will be a function of the following table taking S = 1.1 for Merlin Gerin circuit breakers.



Rated short-circuit breaking capacity (kA)

Sequence n°	current broken	% aperiodic component		
1	10	50 - 100		
2	30	< 20		
3	60	50 - 100		
4	100	< 20		
5	KI to V/K	< 20		
6	SI to V	50 - 100		
7	KSI to V/K	50 - 100		
8	electrical endurance)		
9/10	reclosing cycle at A	SI and AKSI		
11	C - 2 s - O at KI			
12	rated lsc duration = KI for 3 s			
13/14	single phase testing at KI and KSI (0.58 V)			

Short-circuit breaking testing must comply with the 14 test sequences above, with:

		•		
I R	:	symmetrical breaking capacity at maximum voltage reclosing cycle coefficient (Reclosing factor)		
к	:	voltage range factor:	$K = \frac{V_{max}}{V_{min}}$	
S	:	asymmetrical factor:	$rac{lasym}{lsym} = 1.1$	
		for Merlin Gerin circuit	breakers	
V	:	maximum rated voltag	е	

Standards

IEC - ANSI comparison

Coordination of rated values

	According to IE	C					
Rated	Rated short-circuit	Rated	operati	ng curre	nt		
voltage	breaking current						
Ur (kV)	lsc (kA)	Ir (A)					
3.6	10	400					
	16		630	1250			
	25			1250	1600	2500	
	40			1250	1600	2500	3150
7.2	8	400					
	12.5	400	630	1250			
	16		630	1250	1600		
	25		630	1250	1600	2500	
	40			1250	1600	2500	3150
12	8	400					
	12.5	400	630	1250			
	16		630	1250	1600		
	25		630	1250	1600	2500	
	40			1250	1600	2500	3150
	50			1250	1600	2500	3150
17.5	8	400	630	1250			
	12.5		630	1250			
	16		630	1250			
	25			1250			
	40			1250	1600	2500	3150
24	8	400	630	1250			
	12.5		630	1250			
	16		630	1250			
	25			1250	1600	2500	
	40			1250	1600	2500	3150
36	8		630				
	12.5		630	1250			
	16		630	1250	1600		
	25			1250	1600	2500	
	40			1250	1600	2500	3150

According to ANSI

Maximum rated voltage	Rated short-circuit breaking current at U _{max}	Minimum rated voltage	Rated short-circuit breaking current at U _{min}	Rated opera currer	ting			
Umax (kV)	lsc (kA)	(kV)	lsc (kA)	Ir (A)				
4.76	18	3.5	24		1200			
	29	3.85	36		1200	2000		
	41	4	49		1200		3000	
8.25	7	2.3	25	600	1200	2000		
	17	4.6	30		1200			
	33	6.6	41		1200	2000		
15	9.3	6.6	21		1200			
	9.8	4	37		1200			
	18	11.5	23		1200	2000		
	19	6.6	43		1200	2000		
	28	11.5	36		1200	2000		
	37	11.5	48		1200		3000	
15.5	8.9	5.8	24	600				
	18	12	23		1200			
	35	12	45		1200			
	56	12	73			2000	3000	4000
25.8	5.4	12	12	600				
	11	12	24		1200			
38	22	23	36		1200		3000	
	36	24	57		1200			

Derating

According to IEC

Refer to "Switchgear definition/Derating" chapter.

According to ANSI

■ The ANSI standard C37 04 gives for altitudes greater than 1 000 metres: □ a correction factor for the applicable voltage on the rated insulation level and on the rated maximum voltage,

□ a correction factor for the rated operating current. The table of correction factors according to altitude (Altitude Corrections Factors: ACF).

Altitude		ACF for:	
(ft)	(m)	voltage	continous current
3 300	1 000	1.00	1.00
5 000	1 500	0.95	0.99
10 000	3 000	0.8	0.96

N.B.: "sealed system" type circuit breakers,

it is not necessairy to apply the voltage ACF on the maximum rated voltage

Electrical endurance

Merlin Gerin circuit breakers can withstand Isc at least 15 times. IEC and ANSI standards impose values well below this because they take account of oil breaking circuit breakers. These values are not very high and should the customer request it,

we must provide those for the device being considered.

According to IEC

■ The electrical endurance is equal to 3 times lsc.

According to ANSI

■ The electrical endurance is equal to 4 times K.S.Isc.

lsc	:	symmetrical breaking capacity at maximum voltage
S	:	asymmetrical factor
К	:	voltage range factor

Mechanical endurance

According to IEC

■ Mechanical endurance is of 2 000 switching cycles.

According to ANSI

Mechanical endurance is of between 1 500 and 10 000 switching cycles according to the voltage and the breaking capacity.

Construction

According to IEC

■ The IEC does not impose any particular constraints, however, the manufacturer has responsibility of determining what is required in terms of materials (thicknesses, etc) to meet performance requirements in terms of strength.

According to ANSI

ANSI imposes a thickness of 3 mm for sheet metal.

Equipment is designed to operate under the following normal conditions

J

Normal operating conditions

Temperature

Standards	0°C	Installation	
	ambient instantaneous	indoor	outdoor
IEC	minimal	- 5°C	- 25°C
	maximal	+ 40°C	+ 40°C
	maximum average daily value	35°C	35°C
ANSI	minimal	- 30°C	
	maximal	+ 40°C	

N.B.:

For all equipment operating under conditions other than those described above, derating must be provided (see derating chapter).

Altitude

According to IEC

■ The altitude must not exceed 1 000 metres, otherwise the equipment should be derated.

According to ANSI

■ The altitude must not exceed 3 300 feet (1 000 metres), otherwise the equipment should be derated.

Humidity

According to IEC

Average relative humidity value over a period	Indoor equipment
24 hours	95 %
1 month	90 %

According to ANSI

■ No specific constraints.

Reference to Schneider Electric documentation

$\bullet \bullet \bullet \bullet \bullet$
■ MV partner (Pierre GIVORD)
Protection of electrical networks (Christophe PREVE)
■ Protection of electrical networks (édition HERMES fax 01 53 10 15 21) (Christophe PREVE)
■ Medium voltage design (André DELACHANAL)
■ Cahiers techniques
□ n°158 calculating short-circuit currents
□ n°166 enclosures and protection indices (Jean PASTEAU)

Alphabetical Index

Denomination	pages	Discordance	50
A		Distances	38-39
Acceleration	67-69	Documentation	81
Accuracy	57	E	
Accuracy class	62	Earthing disconnector	9
Accuracy limit factor	58	Electrical endurance	53-78
Accuracy power	57-62	Electrodynamic withstand	27
Active power	68	Endurance	53-78
Altitude	53-79	Energy	68-69
Angle	67	Energy (torque)	69
Angular acceleration	67	Entropy	68
Angular speed	67	Environment	40
Aperiodic component	48	Equipment	40
Apparent power	68	Equivalent diagram	19
Area	67	Equivalent impedance	15
Arrangement	29		10
Asynchronous	14-16	E	
Automatic reclosing	48	Factor	49-61
	10	Fault Arcs	16
B		Field	68
Bending	28	Fixed circuit breaker	9
Block	10	Fixed contactor	9
5	48-50-51-52-75	Fluid ounce (UK)	69
British thermal unit	69	Fluid ounce (US)	69
British thermal unit per (pound.degree Fa		Flux	68
British thermal unit per cubic foot.degree		Foot	69
British thermal unit per hour	69	Foot of water	69
British thermal unit per pound	69	Foot per second squared	69
British thermal unit per second	69	Force	68-69
British thermal unit per square foot.hou		Forces	27
Busbars	15-21-28	Forces between conductors	27
Busducting	27-29-37	Frequency	9-29-37-47-54-67
С		G	
Cables	15	Gallon (UK)	69
Cable-charging	51	Gallon (US)	69
Calculating a force	27	Generators	14-15
Calculation	15-17-21	Н	
Calorie capacity	69	Heat capacity	69
Calory power	69		38-53-79
Capacitor bank	51-52	Humidity	30-33-79
Capacity	68	I	
Celsius	68	IK code	43
Circuit breaker	45-48	Impedance method	17
Closing	52	Impulse testing	39
Closing capacity	74	Inch	69
Closing-opening	47	Inch of water	69
Comparison	72	Inductance	68
Compartmented	10	Induction	68
Concentration	67	Insulation level	6
Condensation	38	Intrinsic resonance frequency	29
Conditions	52	Ionization threshold	38
Conductance	68	IP code	41
Conductivity	68	κ	
Construction	78	Knot	69
Coordination	53-77	L	
Cross section	21	Length	67-69
Cubic foot	69	Level of pollution	40
Cubic inch	69	Lightning impulse	39-7
Cubicles	10	Linear mass	29-37-67-69
Current	8-67-68		29-37-07-09
Current transformer	54-55	Line-charging Load	68
D		Load Low inductive currents	52
_	69	Luminous	52 67
Degree Fahrenheit			07
Degree Rankine	69 67	М	
Density		Magnetic field	69
Derating Dialoctric strength	64-65-78	Magnetisation	68
Dielectric strength	38	Magnitudes	67
Dielectric withstand	38-39-40	Making current	46
Differential	59-60	Mass	67-69
Differential transformer	60	Mass per surface area	67-69
Disconnector Disconnector switch	9 9	Mass per volume	67-69
Disconnector switch	9		

Alphabetical Index

Denomination	pages	R Radiation factor	68
M	07	Rated current	8-21-24-46-73
Materials Mechanical effects	67 21	Rated frequency	75
Mechanical endurance	53-78	Rated insulation level	46-72
Mechanical withstand of busbars	28	Rated short circuit	46-74
Metal enclosure	9	Rated values	77
Metal-clad	10	Rated voltage	6-7-21-45-47-54-72-74
Metre	67	Ratio error	63
Mile (UK)	69	Reactive power Resistance	68 68
Minimum distances	39	Resistivity	68
Modulous of elasticity Modulous of inertia	29-37 28-29-37	Resonance	29-37
Modulous of merita Moment of a force	20-29-37	Resultant strain	28
Moment of inertia	29-69	S	
Motors	16	Safety factor	57
Movement	68	Shape of parts	38-39
Multi-stage	51-52	Short circuit power	11-21
Ν		Short time withstand current	26
Network	15	Short-circuit current	9-19
0		Solid angle	67
Oersted	69	Speed	67
Operating current	8	Square foot Square inch	69 69
Operating current	55	Standards	71
Operating voltage	6-21	States	14
Ounce Over-current factor	69 56	Strain	68
Overhead lines	56 15	Supports	27-29
Overview	72	Surface area	67-69
Overvoltages	6	Switch	9
P		Switching sequence	47-75
Peak	50	Symbols Synchronous compensators	67 16
Peak value	9-46-74	T	10
Peak value of admissible current	9	•	38-52-69-79
Period	67	Temperature Temperature rise	22-23
Periodic component	48	Thermal	56-68
Periodic phenomena	67	Thermal conductivity	69
Permissible short time withstand current Permissible strain	46-73 28	Thermal effects	21
Permittivity	20 68	Thermal flux	69
Phase error	63	Thermal power	63
Phase shift	63-67	Thermal short circuit current	56 24
Phase to earth	39	Thermal withstand Thermodynamic	24 67-68
Phase to phase	39-63	Thermodynamic temperature	67-68
Plane angle	67	Three phase calculation examp	
Pollution	38-40	Time	67
Potential Pound	68 69	Transformation ratio	63
Pound force per square foot	69	Transformers	13-14-15
Pound force per square inch	69	Transient	49
Pound force-foot	69	U	
Pound force-inch	69	Units	67
Pound force-second per square foot	69	Units of measurement	67
Pound per cubic foot	69	V	
Pound per cubic inch	69	Vibration	29-37
Pound per foot Pound per foot-second	69 69	Viscosity	68-69
Pound per inch	69	Voltage Voltage transformer	6-49-62-68 61
Pound per square foot	69	Volume	67-69
Pound per square inch	69	Volume per mass	67
Pound square foot	69	Volume per mass	68
Pound-force	69	W	
Power	14-68	Wave lengths	67
Power level	67 28 68 60	Weight	68
Pressure Pressure-strain	38-68-69 69	Withdrawable circuit breaker	9
Primary current	69 55	Withdrawable contactor	9
Primary voltage	61	Work	68
Protection index	41-43	Y	
Q		Yard	69
Quantity	68		

Schneider Electric Industrie SA

Postal address F-38050 Grenoble cedex 9 Tel.: +33 (0)4 76 57 60 60 Telex: merge 320842 F http://www.schneider-electric.com

Rcs Nanterre B 954 503 439

The technical data given in this guide are given for information purposes only. For this reason, Schneider Electric Industries SA is in no way liable for any omission or error contained in its pages.

Published by: Schneider Electric Industries SA Creation, layout by: HeadLines Printed by:

03/2000